Deep Learning-Based Implementation of Convolutional Neural Networks for Skin Disease Detection Through Image Classification on Mobile Platforms
DOI:
https://doi.org/10.51747/energy.v15i2.15216Keywords:
Image, Skin disease, Android, CNNAbstract
Maintaining skin health is essential, as poor skin conditions can lead to various diseases. To address this, early detection and classification of skin disorders is crucial. This study presents a deep learning-based Android application that enables users to detect and classify types of skin diseases through image input. The application integrates a Convolutional Neural Network (CNN) trained on labeled image datasets. The model achieved a training accuracy of 96% and validation accuracy of 83%. To provide a more comprehensive performance evaluation, metrics such as precision (87.75%), recall (84.29%), and F1-score (85.20%) were calculated. The evaluation was conducted using confusion matrix analysis based on eight skin disease classes. The implementation of CNN into an Android-based platform provides a practical and accessible tool for early skin disease detection and classification for the general public.
References
[1] M. Furqan, Y. R. Nasution, and R. Fadillah, “Klasifikasi Penyakit Kulit Menggunakan Algoritma Naïve Bayes Berdasarkan Tekstur Warna Berbasis Android,” vol. 6, 2022.
[2] Y. F. Achmad, A. Yulfitri, and M. B. Ulum, “Identifikasi Jenis Jerawat Berdasarkan Tekstur Menggunakan GLCM dan Backpropagation,” J. SAINTIKOM J. Sains Manaj. Inform. Dan Komput., vol. 20, no. 2, p. 139, Oct. 2021, doi: 10.53513/jis.v20i2.4747.
[3] S. Suharno and Y. Nugraha, “Pengetahuan Pasien tentang Perawatan Luka Dermatitis Kontak pada Pasien Rawat Jalan Berhubungan dengan Kejadian Dermatitis Infeksiosa,” J. Keperawatan Silampari, vol. 6, no. 2, pp. 980–986, Jan. 2023, doi: 10.31539/jks.v6i2.4880.
[4] E. Herdiana, L. Saniah, and F. Reyta, “Deteksi Jenis Penyakit melalui Perubahan Warna Kuku dengan Teknik Image Processing,” J. Account. Inf. Syst. AIMS, vol. 5, no. 1, pp. 81–92, Mar. 2022, doi: 10.32627/aims.v5i1.443.
[5] Rizky Adawiyah and Dadang Iskandar Mulyana, “Optimasi Deteksi Penyakit Kulit Menggunakan Metode Support Vector Machine (SVM) dan Gray Level Co-occurrence Matrix (GLCM),” Inf. J. Inform. Dan Sist. Inf., vol. 14, no. 1, pp. 18–33, May 2022, doi: 10.37424/informasi.v14i1.138.
[6] Y. W. A. Rustam, Chalifa Chazar, and Moch. Ali Ramdhani, “Aplikasi Diagnosa Penyakit Kulit Menggunakan dengan Menggunakan Metode Convolutional Neural Networks,” Inf. J. Inform. Dan Sist. Inf., vol. 15, no. 2, pp. 208–224, Nov. 2023, doi: 10.37424/informasi.v15i2.265.
[7] Brinker, T. J., Hekler, A., Utikal, J. S., et al., “Deep learning outperforms dermatologists in the classification of skin lesions,” Ournal Eur. Acad. Dermatol. Venereol., vol. 36, no. 3, pp. 456–462, 2022.
[8] Z. Liu, J. Zhu, X. Cheng, and Q. Lu, “Optimized Algorithm Design for Text similarity Detection Based on Artificial Intelligence and Natural Language Processing,” Procedia Comput. Sci., vol. 228, pp. 195–202, 2023, doi: 10.1016/j.procs.2023.11.023.
[9] Han, S. S., Moon, I. J., Lim, W., et al, “Mobile application for diagnosis of skin diseases using a deep learning algorithm,” J. Dermatol. Treat., vol. 33, no. 4, pp. 213–220, 2022.
[10] Zhang, X., Li, J., & Wang, H., “Deploying AI-based skin disease detection on mobile devices using lightweight CNNs,” Comput. Biol. Med., vol. 170, p. 107625, 2024.
[11] W. C. Pradana, Mochtar Yahya, and H. Mukminna, “SISTEM DIAGNOSIS PENYAKIT KULIT PADA MANUSIA DENGAN METODE FORWARD CHAINING BERBASIS ANDROID,” J. Inform. Teknol. Dan Sains, vol. 4, no. 3, pp. 165–172, Aug. 2022, doi: 10.51401/jinteks.v4i3.1908.
[12] R. M. Hakiky, N. Hikmah, and D. Ariyanti, “Klasifikasi Jenis Pohon Mangga Berdasarkan Bentuk dan Tekstur Daun Menggunakan Metode Backpropagation,” J. Inform. Upgris, vol. 6, no. 2, Jan. 2021, doi: 10.26877/jiu.v6i2.6645.
[13] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” Jun. 23, 2021, arXiv: arXiv:2104.00298. doi: 10.48550/arXiv.2104.00298.
[14] D. A. Wijaya, A. Triayudi, and A. Gunawan, “Penerapan Artificial Intelligence Untuk Klasifikasi Penyakit Kulit Dengan Metode Convolutional Neural Network Berbasis Web,” J. Comput. Syst. Inform. JoSYC, vol. 4, no. 3, pp. 685–692, May 2023, doi: 10.47065/josyc.v4i3.3519.
[15] Z. Huang, X. Jiang, S. Huang, S. Qin, and S. Yang, “An efficient convolutional neural network-based diagnosis system for citrus fruit diseases,” Front. Genet., vol. 14, p. 1253934, Aug. 2023, doi: 10.3389/fgene.2023.1253934.
[16] N. Effendi, “Penerapan Jaringan Syaraf Tiruan untuk Memprediksi Efektifitas Pembelajaran dengan E-Learning di Universitas Muhammadiyah Riau,” vol. 4, 2018.
[17] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Inform. Comput., vol. 4, no. 1, pp. 45–51, May 2020, doi: 10.30871/jaic.v4i1.2017.
[18] S. Adhisa, “KAJIAN PENERAPAN MODEL PEMBELAJARARAN KOOPERATIF TIPE TRUE OR FALSE PADA KOMPETENSI DASAR KELAINAN DAN PENYAKIT KULIT,” vol. 09, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ENERGY: JURNAL ILMIAH ILMU-ILMU TEKNIK

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











