Design and Construction of an ECG Simulator with Bipolar Leads Based on the Arduino Nano Microcontroller
DOI:
https://doi.org/10.51747/energy.v15i2.15214Keywords:
arduino nano, bipolar, electrocardiogramAbstract
Electrocardiogram (ECG) devices require periodic testing and calibration to ensure diagnostic accuracy, especially in clinical settings where reliable patient monitoring is critical. However, commercially available ECG simulators remain relatively expensive and difficult to access in low-resource environments, creating a gap in the availability of affordable calibration tools. This study aims to design an economical and practical ECG simulator based on the Arduino Nano microcontroller using PWM pins to generate bipolar lead signals. The simulator features an LED indicator that mimics the human heartbeat and provides four operating modes: Mode I (Normal sinus rhythm) 80 BPM, Mode II (Bradycardia) 40 BPM, Mode III (Normal sinus rhythm) 120 BPM, and Mode IV (Tachycardia) 120 BPM. Testing was conducted by collecting data 10 times for each mode across Lead I, Lead II, and Lead III to verify BPM readings and PQRST waveform outputs on both ECG and patient monitor devices. The results demonstrated average accuracies of 98.70% on the ECG and 99.37% on the patient monitor, with deviations of 1.3% and 0.63%, respectively—well within the tolerance limits of the ECRI 410-20010301 standard (±5%). These findings indicate that the proposed simulator offers a reliable, low-cost alternative for internal calibration of patient monitors with bipolar leads, providing a practical and accessible solution for healthcare facilities with limited resources.
References
[1] L. F. Tampubolon, A. Ginting, and F. E. Saragi Turnip, “Gambaran Faktor yang Mempengaruhi Kejadian Penyakit Jantung Koroner (PJK) di Pusat Jantung Terpadu (PJT),” J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 13, no. 3, pp. 1043–1052, 2023, doi: 10.32583/pskm.v13i3.1077.
[2] Harskamp RE. Electrocardiographic screening in primary care for cardiovascular disease risk and atrial fibrillation. Prim Health Care Res Dev. 2019 Jun 25;20:e101. doi: 10.1017/S1463423619000355. PMID: 32800007; PMCID: PMC8060828.
[3] Guna Tyas Istiqomah , Welina Ratnayanti K , Franky Candra SA ,” “Pengembangan Elektrokardiografi (EKG) Portable Sebagai Wujud Teknologi Tepat Guna “Program Studi Teknobiomedik Departemen Fisika Fakultas Sains dan Teknologi Universitas Airlangga
[4] A. Hapiddin, A. M. B. A.M. Boynawan, R. Ratnaningsih, Y. I. Pawestri, and B. Githanadi, “Peningkatan Kemampuan Ukur Kalibrasi Sumber Frekuensi Di Bawah 10 Hz Dan Simulasi Diseminasinya Dalam Heart Rate Electrocardiogram (Ecg),” Instrumentasi, vol. 46, no. 1, p. 35, 2022, doi: 10.31153/instrumentasi.v46i1.264.
[5] Suroso Andrianto and Laela Sakinah, “Perancangan Simulator Ekg ( Elektronik Kardiogra ) ,” J. Ilm. KOMPUTASI, vol. 16, no. September, pp. 133–137, 2017.
[6] N. Kholis, “Rancang Bangun Simulator Elektrokardiogrammenggunakan Fpga yang Terintegrasi dengan Software Python,” pp. 619–625, 2020.
[7] I. D. G. B. Whinangun, A. Pudji, M. R. Makruf, B. Utomo, dan S. Luthfiyah, “Electrocardiograph Simulator Berbasis Mikrokontroler,” Jurnal Teknokes, vol. 12, no. 1, hlm. 5–13, Sep. 2019.
[8] M. A. Firmansyah dan F. Wijaya, Rancang Bangun Sistem Monitoring Nirkabel Elektrokardiogram (EKG) Berbasis Mikrokontroler ATMega328, Skripsi, Fisika Teknik, Universitas Gadjah Mada, Yogyakarta, 2023.
[9] C. Suharinto, A. Budianto, & N. Sanyoto, "Design of electrocardiograph signal simulator", Indonesian Journal of Electronics Electromedical Engineering and Medical Informatics, vol. 2, no. 1, p. 43-47, 2020. https://doi.org/10.35882/ijeeemi.v2i1.9
[10] C. Melinda, I. Wisana, A. Pudji, & T. Triwiyanto, "Ecg and nibp simulators in one device display on tft nextion", Indonesian Journal of Electronics Electromedical Engineering and Medical Informatics, vol. 5, no. 3, p. 151-157, 2023. https://doi.org/10.35882/ijeeemi.v5i3.293
[11] M. Quiroz‐Juárez, J. Rosales-Juárez, O. Jiménez‐Ramírez, R. Vázquez‐Medina, & J. Aragón, "Ecg patient simulator based on mathematical models", Sensors, vol. 22, no. 15, p. 5714, 2022. https://doi.org/10.3390/s22155714
[12] D. Ogiermann, L. Perotti, & D. Balzani, "Towards a physiologically accurate ecg from numerical simulations: comparative analyses in a simplified tissue model", Pamm, vol. 20, no. 1, 2021. https://doi.org/10.1002/pamm.202000136
[13] W. Choi, S. Kim, W. Lee, S. Kang, C. Yoon, T. Younet al., "Comparison of continuous ecg monitoring by wearable patch device and conventional telemonitoring device", Journal of Korean Medical Science, vol. 35, no. 44, 2020. https://doi.org/10.3346/jkms.2020.35.e363
[14] L. Ekenberg, D. Høfsten, S. Rasmussen, J. Mølgaard, P. Hasbak, H. Sørensenet al., "Wireless single-lead versus standard 12-lead ecg, for st-segment deviation during adenosine cardiac stress scintigraphy", Sensors, vol. 23, no. 6, p. 2962, 2023. https://doi.org/10.3390/s23062962
[15] L. Bilello, C. Pascheles, K. Gurley, D. Rappaport, D. Chiu, S. Grossmanet al., "Getting to the heart of the issue: senior emergency resident electrocardiogram interpretation and its impact on quality assurance events", Clinical and Experimental Emergency Medicine, vol. 7, no. 3, p. 220-224, 2020. https://doi.org/10.15441/ceem.19.070
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ENERGY: JURNAL ILMIAH ILMU-ILMU TEKNIK

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











