Geochemical and Mineralogical Analysis of Mining Tailings in Mimika Regency for Reutilization Potential Evaluation

Authors

  • Nilam Sry Putri Department of Mining Engineering, Politeknik Amamapare Timika, Jl. C. Heatubun, Kwamki Baru, Mimika Regency, Central Papua, Indonesia. Author
  • Abd Rahim Department of Mining Engineering, Politeknik Amamapare Timika, Jl. C. Heatubun, Kwamki Baru, Mimika Regency, Central Papua, Indonesia Author

DOI:

https://doi.org/10.51747/energy.v15i2.15213

Keywords:

Tailings, Geochemistry, Mineralogy, XRF, XRD, SEM–EDS, Mimika

Abstract

This study characterizes the geochemical, mineralogical, and morphological properties of mine tailings along the Kali Kabur River in Mimika Regency, Central Papua. The tailings, generated by mining activities, contain valuable metallic minerals, including iron (Fe), copper (Cu), and titanium (Ti). Using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Scanning Electron Microscope–Energy Dispersive X-Ray Spectroscopy (SEM–EDS), we identified major oxides (Fe₂O₃, SiO₂, CaO) and minerals (quartz, magnetite, ilmenite, chalcopyrite). Results indicate that the tailings possess potential for reutilization as secondary resources for metal extraction and as raw materials for iron sand production. This research provides novel insights into sustainable tailings management and offers guidance for local industries in the reutilization of mining waste, contributing to circular economy practices.

References

[1] M. Lemos, T. Valente, A. Reis, R. Fonseca, J. Pantaleão, F. Guabirobaet al., "Geochemistry and mineralogy of auriferous tailings deposits and their potential for reuse in nova lima region, brazil", Scientific Reports, vol. 13, no. 1, 2023. https://doi.org/10.1038/s41598-023-31133-6

[2] Y. Li, M. Huang, J. Li, S. Zhang, G. Yang, X. Chenet al., "Performance assessment of all-solid-waste high-strength concrete prepared from waste rock aggregates", Materials, vol. 18, no. 3, p. 624, 2025. https://doi.org/10.3390/ma18030624

[3] Q. Li, "Microstructural characterization of copper-bearing mineral residues and their potential for environmental remediation and resource recovery", Strat. Manag. Insights, vol. 2, no. 1, p. 66-74, 2025. https://doi.org/10.70088/qtcw5j02

[4] P. Kaung, A. SEMIKIN, A. Khayrutdinov, & A. DEKHTYARENKO, "Recycling of industrial waste is a paradigm of resource provision for sustainable development", Sustainable Development of Mountain Territories, vol. 15, no. 2, p. 385-397, 2023. https://doi.org/10.21177/1998-4502-2023-15-2-385-397

[5] G. Cardoso, G. Almeida, D. Corrêa, W. Zambuzzi, M. Buzalaf, D. Corrêaet al., "Preparation and characterization of novel as-cast ti-mo-nb alloys for biomedical applications", Scientific Reports, vol. 12, no. 1, 2022. https://doi.org/10.1038/s41598-022-14820-8

[6] C. Cacciuttolo, D. Cano, & M. Custodio, "Socio-environmental risks linked with mine tailings chemical composition: promoting responsible and safe mine tailings management considering copper and gold mining experiences from chile and peru", Toxics, vol. 11, no. 5, p. 462, 2023. https://doi.org/10.3390/toxics11050462

[7] O. Kaba, F. Souissi, D. Keïta, L. Filippov, M. Conté, & N. Kanari, "Mineral weathering and metal leaching under meteoric conditions in f-(ba-pb-zn) mining waste of hammam zriba (ne tunisia)", Materials, vol. 16, no. 23, p. 7443, 2023. https://doi.org/10.3390/ma16237443

[8] H. Yoon and J. Yoon, "The impact evaluation of acid mine drainage on zebrafish (danio rerio) and water fleas (daphnia magna) in the vicinity of the geum river basin in korea", International Journal of Environmental Research and Public Health, vol. 19, no. 24, p. 16470, 2022. https://doi.org/10.3390/ijerph192416470

[9] C. Cacciuttolo and D. Cano, "Spatial and temporal study of supernatant process water pond in tailings storage facilities: use of remote sensing techniques for preventing mine tailings dam failures", Sustainability, vol. 15, no. 6, p. 4984, 2023. https://doi.org/10.3390/su15064984

[10] C. Cacciuttolo and E. Atencio, "Past, present, and future of copper mine tailings governance in chile (1905–2022): a review in one of the leading mining countries in the world", International Journal of Environmental Research and Public Health, vol. 19, no. 20, p. 13060, 2022. https://doi.org/10.3390/ijerph192013060

[11] T. Makhathini, J. Mulopo, & B. Bakare, "Enriched co-treatment of pharmaceutical and acidic metal-containing wastewater with nano zero-valent iron", Minerals, vol. 11, no. 2, p. 220, 2021. https://doi.org/10.3390/min11020220

[12] A. Jelecevic, M. Sager, D. Vollprecht, M. Puschenreiter, & P. Liebhard, "Partitioning of heavy metals in different particle-size fractions of soils from former mining and smelting locations in austria", Eurasian Journal of Soil Science (Ejss), vol. 10, no. 2, p. 123-131, 2021. https://doi.org/10.18393/ejss.837139

[13] C. Abarzúa, M. Morel, G. Sandoval‐Hevia, T. Kavinkumar, N. Chidhambaram, S. Kamarajet al., "Mineral-based synthesis of cufe2o4 nanoparticles via co-precipitation and microwave techniques using leached copper solutions from mined minerals", Minerals, vol. 15, no. 8, p. 819, 2025. https://doi.org/10.3390/min15080819

[14] V. Trifunović, L. Avramović, D. Božić, M. Jonović, D. Šabaz, & D. Bugarin, "Flotation tailings from cu-au mining (bor, serbia) as a potential secondary raw material for valuable metals recovery", Minerals, vol. 14, no. 9, p. 905, 2024. https://doi.org/10.3390/min14090905

[15] Y. Shi, Z. Zhang, Z. Sang, & Q. Zhao, "Microstructure and composition of red mud-fly ash-based geopolymers incorporating carbide slag", Frontiers in Materials, vol. 7, 2020. https://doi.org/10.3389/fmats.2020.563233

[16] B. Salman, I. Annon, & A. Hamood, "Characterization of the chemical, phase, and thermal properties of iraqi dolomite ore and extraction of magnesium oxide", Iop Conference Series Earth and Environmental Science, vol. 1507, no. 1, p. 012072, 2025. https://doi.org/10.1088/1755-1315/1507/1/012072

[17] B. Suharno, N. Ilman, A. Shofi, D. Ferdian, & F. Nurjaman, "Study of low-grade nickel laterite processing using palm shell charcoal as reductant", Materials Science Forum, vol. 1000, p. 436-446, 2020. https://doi.org/10.4028/www.scientific.net/msf.1000.436

[18] A. Kanth, M. Singh, & B. Mani, "Archaeometallurgical characterisation of ancient copper slags from pre‐harappan site, kunal, india", Analytical Science Advances, vol. 3, no. 7-8, p. 226-234, 2022. https://doi.org/10.1002/ansa.202100050

[19] H. Han, X. Yin, J. Dyer, R. Landis, & L. Axe, "Characterizing reactive iron mineral coatings in redox transition zones", Acs Earth and Space Chemistry, vol. 4, no. 12, p. 2337-2346, 2020. https://doi.org/10.1021/acsearthspacechem.0c00233

[20] A. Kanth, M. Singh, & B. Mani, "Archaeometallurgical characterisation of ancient copper slags from pre‐harappan site, kunal, india", Analytical Science Advances, vol. 3, no. 7-8, p. 226-234, 2022. https://doi.org/10.1002/ansa.202100050

[21] M. Kądziołka-Gaweł, J. Nowak, M. Szubka, J. Klimontko, & M. Wojtyniak, "Thermal decomposition of siderite and characterization of the decomposition products under o2 and co2 atmospheres", Minerals, vol. 13, no. 8, p. 1066, 2023. https://doi.org/10.3390/min13081066

[22] C. Ríos‒Reyes, E. Martínez, & D. Jaraba, "Occurrence of iron ores hosted in los tábanos rhyodacite of san juan del cesar (la guajira), sierra nevada of santa marta massif: petrologic significance", Tecnura, vol. 29, no. 83, p. 65-84, 2025. https://doi.org/10.14483/22487638.21971

[23] A. Saputra, M. Ramli, S. Sufriadin, & N. Nurhikmah, "Mineralogical studies of the tanjung iron mine in the bone, south sulawesi: implication for amd generation", Iop Conference Series Earth and Environmental Science, vol. 1272, no. 1, p. 012036, 2023. https://doi.org/10.1088/1755-1315/1272/1/012036

[24] F. Silva, F. Araújo, F. Krüger, G. Silva, R. Batista, & T. Manhabosco, "Characterization of magnetic tailings from phosphate-ore processing in alto paranaíba", Materials Research, vol. 25, 2022. https://doi.org/10.1590/1980-5373-mr-2021-0621

[25] C. Keim, J. Serna, D. Acosta‐Avalos, R. Neumann, A. Silva, D. Jureleviciuset al., "Dissimilatory iron-reducing microorganisms are present and active in the sediments of the doce river and tributaries impacted by iron mine tailings from the collapsed fundão dam (mariana, mg, brazil)", Minerals, vol. 11, no. 3, p. 244, 2021. https://doi.org/10.3390/min11030244

[26] A. Saputra, M. Ramli, S. Sufriadin, & N. Nurhikmah, "Mineralogical studies of the tanjung iron mine in the bone, south sulawesi: implication for amd generation", Iop Conference Series Earth and Environmental Science, vol. 1272, no. 1, p. 012036, 2023. https://doi.org/10.1088/1755-1315/1272/1/012036

[27] G. Lau, C. Trivedi, S. Grasby, J. Spear, J. Cosmidis, & A. Templeton, "Sulfur- and iron-rich mineralogical features preserved in permafrost in the canadian high arctic: analogs for the astrobiological exploration of mars", Frontiers in Astronomy and Space Sciences, vol. 9, 2022. https://doi.org/10.3389/fspas.2022.825019

[28] T. Pi‐Puig, J. Solé, & A. Cruz, "Mineralogical study and genetic model of efflorescent salts and crusts from two abandoned tailings in the taxco mining district, guerrero (mexico)", Minerals, vol. 10, no. 10, p. 871, 2020. https://doi.org/10.3390/min10100871

[29] M. Renani, K. Rezaei, M. Arian, M. Aleali, & P. Giahchi, "Sedimentology and geochemistry of quaternary sediments and determination of sediment transport, tectonic setting in the wetland of saghalak-sar rasht", Journal of Geology Geography and Geoecology, vol. 29, no. 3, p. 550-561, 2020. https://doi.org/10.15421/112050

[30] R. Sochea, S. Somsak, & A. Numprasanthai, "Study on beneficiation of silica sand by wet high-intensity magnetic separators (whims) and reverse flotation technique for glass application: a case study from sihanoukville, cambodia", Warta Geologi, vol. 46, no. 3, p. 210-213, 2020. https://doi.org/10.7186/wg463202007

[31] K. Goff, R. Schaetzl, S. Chakraborty, D. Weindorf, C. Kasmerchak, & E. Bettis, "Impact of sample preparation methods for characterizing the geochemistry of soils and sediments by portable x‐ray fluorescence", Soil Science Society of America Journal, vol. 84, no. 1, p. 131-143, 2020. https://doi.org/10.1002/saj2.20004

[32] L. Stütenbecker, D. Scheuvens, M. Hinderer, J. Hornung, R. Petschick, N. Railaet al., "Temporal variability of fluvial sand composition: an annual time series from four rivers in sw germany", Journal of Geophysical Research Earth Surface, vol. 128, no. 6, 2023. https://doi.org/10.1029/2023jf007138

[33] C. Wang, J. Jing, Y. Qi, Y. Zhou, K. Zhang, Y. Zhenget al., "Basic characteristics and environmental impact of iron ore tailings", Frontiers in Earth Science, vol. 11, 2023. https://doi.org/10.3389/feart.2023.1181984

[34] A. Surrette, A. Dobosz, G. Dzemua, H. Falck, & H. Jamieson, "Geochemical and mineralogical heterogeneity of the cantung mine tailings: implications for remediation and reprocessing", Frontiers in Geochemistry, vol. 2, 2024. https://doi.org/10.3389/fgeoc.2024.1392021

[35] A. Hameed, A. Raju, & P. Nagarajan, "Feasibility study on the use of iron ore tailings as fine aggregate with glass fibre in concrete", Iop Conference Series Earth and Environmental Science, vol. 1327, no. 1, p. 012014, 2024. https://doi.org/10.1088/1755-1315/1327/1/012014

[36] N. Cobîrzan, R. Muntean, G. Thalmaier, & R. Felseghi, "Recycling of mining waste in the production of masonry units", Materials, vol. 15, no. 2, p. 594, 2022. https://doi.org/10.3390/ma15020594

Downloads

Published

2025-11-30

How to Cite

Geochemical and Mineralogical Analysis of Mining Tailings in Mimika Regency for Reutilization Potential Evaluation. (2025). ENERGY: JURNAL ILMIAH ILMU-ILMU TEKNIK, 15(2), 283-299. https://doi.org/10.51747/energy.v15i2.15213