Design of a Hydraulic System for a Glycerin Waste Mixer Machine Using Finite Element Method

Authors

  • Rosalina Amanda Design and Manufacturing Engineering, Shipbuilding Institute of Polytechnic Surabaya, 6011, Indonesia Author
  • Ahmad Syifa Ubaidillah Design and Manufacturing Engineering, Shipbuilding Institute of Polytechnic Surabaya, 6011, Indonesia Author
  • Fipka Bisono Design and Manufacturing Engineering, Shipbuilding Institute of Polytechnic Surabaya, 6011, Indonesia Author
  • Widya Emilia Primaningtyas Design and Manufacturing Engineering, Shipbuilding Institute of Polytechnic Surabaya, 6011, Indonesia Author

DOI:

https://doi.org/10.51747/energy.v15i2.15212

Keywords:

Glycerin Waste, Hydraulic System, FEM, Mixer Machine, Cost Efficiency

Abstract

This study presents the design of a hydraulic-based glycerin waste mixer machine, intended for use in the cement industry as a sustainable alternative to coal. Glycerin waste, a byproduct of biodiesel production, has a calorific value of 25,175.98 kJ/kg, making it a viable substitute fuel. However, its high viscosity and tendency to solidify at low temperatures pose significant challenges for processing. This research addresses these challenges by designing a hydraulic mixer with structural strength verified through Finite Element Method (FEM) analysis. The design follows the Ulrich & Eppinger product design approach, including concept development, technical specifications, and hydraulic system planning. Using Autodesk Fusion 360, the machine's frame, made of ASTM A36 steel, withstood loads with a maximum stress of 87.5 MPa and a safety factor of 2.83, ensuring its structural integrity. The hydraulic system, employing a double-acting cylinder operating at 10 bar, requires a motor power of 4.09 kW and achieves a fluid flow rate of 235.5 L/min. Cost analysis revealed a 30.44% reduction in manufacturing costs compared to similar commercial machines, totaling IDR 16.7 million. These findings demonstrate the efficiency, safety, and economic viability of the mixer, offering a promising solution for glycerin waste utilization in the cement industry.

References

[1] A. M. Ilham, Z. Helwani, and W. Fatra, “Densifikasi Produk Karbonisasi Pelepah Sawit Menjadi Briket Menggunakan Crude Gliserol Produk Samping Biodiesel Sebagai Filler,” JOMFTEKNIK, vol. 3, no. 2, pp. 2–5, 2016.

[2] Suhartanta and Z. Arifin, “Pemanfaatan Minyak Jarak Pagar Sebagai Bahan Bakar Alternatif Mesin Diesel,” J. Penelit. Saintek, pp. 19–46, 2008.

[3] P. J. Rowe, Raymond C. Sheskey, Handbook of Pharmaceutical Excipients, 6th ed. Pharmaceutical Press, 2009.

[4] T. Jirout and D. Jiroutova, “Application of Theoretical and Experimental Findings for Optimization of Mixing Processes and Equipment,” 2020.

[5] O. I. Iyobosa, “Design and Construction of an Electrically Operated Paint Mixing Machine,” J. Eng. Res. Reports, pp. 20–29, 2020, doi: 10.9734/jerr/2020/v14i317125.

[6] Ł. Warguła et al., “The Influence of Kinematic Viscosity of Oils on the Energy Consumption of a Gear Pump Used for Pumping Oil in Machines and Vehicles,” PLoS One, vol. 20, no. 9, p. e0331371, 2025, doi: 10.1371/journal.pone.0331371.

[7] W. Piotrowski, R. Kubica, and M. Gądek, “Studies on a Novel Jet Mixer in the Extraction Process,” Processes, vol. 11, no. 10, p. 2904, 2023, doi: 10.3390/pr11102904.

[8] D. Sun, W. Wang, Y. Ju, W. Song, Y. Li, and L. Li, “Shearing and Mixing Performance of Ultrahigh-Molecular-Weight Hydrolyzed Polyacrylamide (HPAM) Solution in a Helixes Static Mixer,” Teh. Vjesn. - Tech. Gaz., vol. 28, no. 2, 2021, doi: 10.17559/tv-20190712015659.

[9] J. V Karaeva, G. R. Khalitova, D. A. Kovalev, and I. A. Trakhunova, “Study of the Process of Hydraulic Mixing in Anaerobic Digester of Biogas Plant” no. March, 2015, doi: 10.1515/cpe-2015-0008.

[10] A. B. Prasetiyo and K. A. Sekarjati, “Finite Element Simulation of Power Weeder Machine Frame,” vol. 4, no. 2, 2022.

[11] A. Berardi et al., “FEA for Optimizing Design and Fabrication of Frame Structure of Elevating Work Platforms,” pp. 1–15, 2025.

[12] K. T. Ulrich and S. D. Eppinger, Product Design and Development. McGraw-Hill/Irwin, 2012.

[13] I. M. L. Batan, Desain Produk, Pertama. Inti Karya Guna, 2012.

[14] Praw, A. Prasetyo, and Gunawan, Hidrolika dan Pneumatika, 1st ed. Jakarta: Erlangga, 2003.

[15] R. . Khurmi and J. . Gupta, Machine Design. Eurasia Publishing House, 2005.

[16] R. Pratama, R. Effendi, M. Qadri, and A. Y. Nasution, “Analysis of The Frame Design of Cracker Sheet Printing and Cutting Machine Using Finite Element Method Simulation,” vol. 12, no. 1, pp. 7–13, 2024.

[17] R. L. Mott and J. A. Untener, Applied Strength of Materials, 7th ed. CRC Press, 2021.

[18] A. Rahimzadeh, F. Ein‐Mozaffari, and A. Lohi, “New Insights Into the Gas Dispersion and Mass Transfer in Shear-Thinning Fluids Inside an Aerated Coaxial Mixer via Analysis of Flow Hydrodynamics and Shear Environment,” Ind. Eng. Chem. Res., vol. 61, no. 10, pp. 3713–3728, 2022, doi: 10.1021/acs.iecr.1c04586.

[19] A. Costine, P. D. Fawell, A. Chryss, S. Dahl, and J. Bellwood, “Development of Test Procedures Based on Chaotic Advection for Assessing Polymer Performance in High-Solids Tailings Applications,” Processes, vol. 8, no. 6, p. 731, 2020, doi: 10.3390/pr8060731.

[20] A. M. Díaz, I. Terrones-Fernandez, P. J. Gamez-Montero, and R. Castilla, “Helical Static Mixer Simulations for Its Integration in the Pour Plate Method: Mixing Agar and a Nutrient Solution,” Energies, vol. 16, no. 15, p. 5816, 2023, doi: 10.3390/en16155816.

[21] S. J. Tan, K. H. Yu, M. A. Ismail, C. F. Goh, and K. B. Lua, “Numerical Investigation of in-Line and Staggered Fins Arrangements on Liquid Mixer,” J. Brazilian Soc. Mech. Sci. Eng., vol. 46, no. 3, 2024, doi: 10.1007/s40430-024-04733-0.

[22] L. A. N. Wibawa, “Static Stress Analysis and Fatigue Life Prediction of Rocket Motor Test Stand Using Numerical Simulation,” R E M (Rekayasa Energi Manufaktur) J., vol. 6, no. 2, pp. 9–13, 2021, doi: 10.21070/r.e.m.v6i2.1533.

[23] D. H. Al-Janan et al., “Stress and Displacement Analysis of Powder Packaging Machine of Capacity 2,600 PCS/Hours,” Iop Conf. Ser. Earth Environ. Sci., vol. 969, no. 1, p. 12018, 2022, doi: 10.1088/1755-1315/969/1/012018.

[24] F. Fernanda, Munirwansyah, and M. Sungkar, “Increase in Safety Factor Value in Existing Conditions and Reinforcement of Gabion Type Retaining Wall Pt. Medco E&P Malaka Block A,” E3s Web Conf., vol. 476, p. 1014, 2024, doi: 10.1051/e3sconf/202447601014.

[25] F. A. N. biomej et al., “Torque Load Analysis on Rear Axle Shaft Material AISI 4340 Normalized,” Biomed. Mech. Eng. J., vol. 2, no. 2, pp. 36–40, 2023, doi: 10.33005/biomej.v2i2.59.

[26] C. Tabayyun, “Analisis Frame Meja Dandori Menggunakan Metode Finite Element Analysis ( FEA ),” vol. 04, no. 02, pp. 77–87, 2025.

[27] Z. Yang, B. Deng, M. Deng, and G. Sun, “A Study on Finite Element Analysis of Electric Bus Frame for Lightweight Design,” vol. 03049, pp. 1–4, 2018.

[28] N. H. K. Anuar, M. N. M. Razali, M. R. M. Yasin, M. A. Hadi, and A. N. A. Ghaffar, “Study on Custom Centrifugal Pump Performance in Supplying Food Based High Viscos Liquid,” J. Mod. Manuf. Syst. Technol., vol. 5, no. 1, pp. 80–88, 2021, doi: 10.15282/jmmst.v5i1.6280.

[29] A. A. Mohammedali, A. A. M. Omara, I. R. Mohamed, H. Mohamed, and D. Mohamed, “Performance Assessment of a Centrifugal Pump With Varying Blade Counts and Fluid Viscosities Through Euler Head and Entropy Production Analysis,” Eng. Reports, vol. 7, no. 4, 2025, doi: 10.1002/eng2.70105.

[30] İ. Sezer and Y. S. Şahin, “Experimental Investigation of Centrifugal Pump Characteristics,” Int. J. Adv. Nat. Sci. Eng. Res., vol. 7, no. 4, pp. 408–414, 2023, doi: 10.59287/ijanser.755.

[31] D. S. Dickey and J. B. Fasano, “Mechanical Design of Mixing Equipment,” in Handbook of Industrial Mixing: Science and Practice, John Willey & Sons, Inc, 2004.

[32] A. B. Seelam, A. K. A. Ahmed, and K. H. Sachidananda, “Buggy Role Cage – Analysis and Design,” Int. J. Saf. Secur. Eng., vol. 10, no. 5, pp. 589–599, 2020, doi: 10.18280/ijsse.100502.

[33] M. H. Tullah et al., “Design and Evaluation of Hollow Frame Structures for the Development of Urban-Centric Two-Passenger Electric Vehicles,” Eastern-European J. Enterp. Technol., vol. 5, no. 7 (125), pp. 80–86, 2023, doi: 10.15587/1729-4061.2023.289232.

[34] S. H. Asif, K. Hasan, and N. R. Dhar, “Topology Optimization and 3D Printing of a Unibody Quadcopter Airframe,” Iop Conf. Ser. Mater. Sci. Eng., vol. 1305, no. 1, p. 12021, 2024, doi: 10.1088/1757-899x/1305/1/012021.

[35] A. C. Mahato and S. K. Ghoshal, “Energy-Saving Strategies on Power Hydraulic System: An Overview,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol. 235, no. 2, pp. 147–169, 2020, doi: 10.1177/0959651820931627.

[36] K. Pate, J. R. Marschand, F. Breidi, T. Salem, and J. Lumkes, “Design and Sensitivity Analysis of Mechanically Actuated Digital Radial Piston Pumps,” Processes, vol. 12, no. 3, p. 504, 2024, doi: 10.3390/pr12030504.

[37] R. Petrović, A. Banaszek, M. Andjelković, H. R. A. Qananah, and K. A. Alnagasa, “Experimental Tests of the Piston Axial Pump With Constant Pressure and Variable Flow,” Designs, vol. 8, no. 1, p. 5, 2023, doi: 10.3390/designs8010005.

[38] N. Todić, S. Savić, D. Gordić, and R. Petrović, “Experimental Research of the Hydrodynamic Processes of an Axial Piston Water Hydraulic Pump,” Machines, vol. 10, no. 9, p. 728, 2022, doi: 10.3390/machines10090728.

[39] G. Sun, K. Cui, M. Liu, J. Zhang, Y. Sun, and X. Yang, “Design and Analysis of the Integrated Linear Actuation Module of the Swash Plate for Piston Pump/Motor,” J. Phys. Conf. Ser., vol. 3097, no. 1, p. 12014, 2025, doi: 10.1088/1742-6596/3097/1/012014.

[40] D. Dong, Y. Zou, H. Pan, G. Zhou, F. Yu, and Y. Tang, “DFMA-oriented Modular and Parametric Design and Secondary Splitting of Vertical PC Components,” Sci. Rep., vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-30192-z.

Downloads

Published

2025-11-30

How to Cite

Design of a Hydraulic System for a Glycerin Waste Mixer Machine Using Finite Element Method. (2025). ENERGY: JURNAL ILMIAH ILMU-ILMU TEKNIK, 15(2), 268-282. https://doi.org/10.51747/energy.v15i2.15212