Applications of Convolutional Neural Networks and Transfer Learning for Enhancing the Accuracy of Dragon Fruit Classification
DOI:
https://doi.org/10.51747/energy.v15i2.15209Keywords:
Dragon Fruit, CNN, Transfer Learning, Classification, AccuracyAbstract
This paper discusses the application of Convolutional Neural Network (CNN) and Transfer Learning (TL) methods to improve the accuracy of dragon fruit classification. The application of the CNN method in real-time testing for classifying three types of dragon fruit only achieved an accuracy rate of 33.3%. Therefore, the CNN and TL methods using the Stochastic Gradient Descent (O-SGD) optimizer and the Root Mean Square Propagation (O-RMSProp) optimizer are proposed to improve the accuracy rate in classifying three types of dragon fruit: ripe, unripe, and rotten. The results of applying the CNN method with O-SGD at epoch 100 yielded an accuracy of 27.18%, val accuracy of 27.27%, loss of 1.407, and val loss of 1.405, while O-RMSProp at epoch 100 yielded an accuracy of 99.11%, val accuracy of 100%, loss of 0.073, and val loss of 0.058. Meanwhile, the application of the TL method with O-SGD at epoch 100 yielded an accuracy of 89.35%, val accuracy of 91.82%, loss of 0.462, and val loss of 0.443. TL with O-RMSProp at epoch 100 yielded an accuracy of 100%, val accuracy of 100%, loss of 0.002, and val loss of 0.003. The performance of the TL method with O-SGD and O-RMSProp is more accurate in classifying three types of dragon fruit compared to the CNN O-SGD and O-RMSProp models. This research contributes to improving the accuracy level of the CNN classification method to ±99-100%, and the application of this technology is an effort to enhance production quality and support smart agriculture in Banyuwangi Regency.
References
[1] S. A. Ratang, S. Aminah, and M. Ughu, “Analisis Potensi Budidaya Buah Naga Sebagai Upaya Meningkatkan Pendapatan Masyarakat di Kampung Wulukubun Kabupaten Keerom,” JUMABIS (Jurnal Manaj. dan Bisnis), vol. 4, no. 1, pp. 1–18, 2020, doi: 10.55264/jumabis.v4i1.59.
[2] S. Endang Adiningsih, M. Nur Alam, and Sisfahyuni, “Analisis Produksi Dan Pendapatan Usahatani Buah Naga Di Kecamatan Wita Ponda Kabupaten Morowali,” J. Agrotekbis, vol. 10, no. 4, pp. 574–583, 2022.
[3] D. F. U. Putra, O. Penangsang, R. S. Wibowo, and N. K. Aryani, “Implementasi Photovoltaic Terintegrasi Battery Storage guna Menunjang Penerangan pada Kebun Buah Naga Desa Sukorejo,” Sewagati, vol. 7, no. 6, pp. 1016–1025, 2023, doi: 10.12962/j26139960.v7i6.794.
[4] Fatmawati, A. H. Laenggeng, and F. Amalinda, “Analisis Kandungan Gizi Makro Kerupuk Buah Naga Merah (Hylocereus Polyrhizus),” J. Kolaboratif Sains, vol. 1, no. 1, pp. 159–167, 2018, doi: 10.56338/jks.v1i1.347.
[5] Zackiyah, W. N. Almas, and H. Solihin, “Pemanfaatan Buah Naga Merah Untuk Pangan Fungsional Pewarna Alami dan Tekstur Pada Pembuatan Bolu Kukus,” in Prosiding Seminar Nasional Sains dan Pendidikan Sains, 2018, pp. 74–82.
[6] Amiroh and G. Abdillah, “Pemanfaatan Buah Naga Sebagai Pangan Fungsional: Optimalisasi Penggunaan Buah Naga (Hylocereus Polyrhizus) Pada Es Lilin,” Ilmu Gizi Kesehat., vol. 7, no. 1, pp. 20–27, 2019.
[7] D. Sartika, Sutikno, N. Yuliana, and S. R. Maghfiroh, “Identifikasi Senyawa Antimikroba Alami Pangan Pada Ekstrak Kulit Buah Naga Merah Dengan Menggunakan GC-MS,” J. Teknol. Ind. Has. Pertan., vol. 24, no. 2, pp. 67–76, 2019, doi: 10.23960/jtihp.v24i2.67-76.
[8] F. K. Nisa, F. W. Ningtyias, and S. Sulistiyani, “Pengaruh Pemberian Jus Buah Naga Merah (Hylocereus Polyrhizus) Terhadap Penurunan Tekanan Darah,” Ghidza J. Gizi dan Kesehat., vol. 3, no. 1, p. 12, 2019, doi: 10.22487/j26227622.2019.v3.i1.12667.
[9] S. Mahmudah, “Pemanfaatan Sirup Buah Naga Merah (Hylocereus Polyrhizus) Untuk Meningkatkan Kadar Hemoglobin,” J. Kesehat. Karya Husada, vol. 7, no. 2, pp. 54–69, 2019, doi: 10.36577/jkkh.v7i2.236.
[10] A. P. Tarigan, N. S. Harahap, and D. R. Marpaung, “Pengaruh Pemberian Jus Buah Naga Merah Setelah Latihan Fisik Intensitas Berat Terhadap Jumlah Leukosit,” J. Keolahragaan, vol. 8, no. 2, pp. 140–147, 2020, doi: 10.21831/jk.v8i2.31838.
[11] D. N. Aisyah, N. Kurniaty, and G. C. E. Darma, “Uji Aktivitas Antioksidan Buah Naga Merah (Hylocereus polyrhizus L.) serta Formulasi Pembuatan Selai,” in Prosiding Farmasi, 2021, vol. 7, no. 1, pp. 37–42. doi: 10.29313/.v7i1.26002.
[12] A. Safira et al., “Review on The Pharmacological and Health Aspects of Hylocereus or Pitaya : An update,” J. Drug Deliv. Ther., vol. 11, no. 6, pp. 297–303, 2021, doi: 10.22270/jddt.v11i6.5181.
[13] K. P. Prapti, R. Iskandar, and Kasutjianingati, “Strategi Peningkatan Kinerja Supply Chain Buah Naga Di Kecamatan Bangorejo Kabupaten Banyuwangi Berdasarkan Proses Inti Scor,” J. Ilm. Inov., vol. 15, no. 3, pp. 94–98, 2015, doi: 10.25047/jii.v15i3.19.
[14] A. N. Isnanda, H. M. Ani, and B. Suyadi, “Pengaruh Biaya Usahatani Buah Naga Terhadap Keuntungan Para Petani Buah Naga Di Desa Temurejo Kecamatan Bangorejo Kabupaten Banyuwangi,” J. Ilm. Ilmu Pendidikan, Ilmu Ekon. dan Ilmu Sos., vol. 11, no. 1, p. 22, 2017, doi: 10.19184/jpe.v11i1.4993.
[15] N. L. P. Indriyani and Hardiyanto, “Pengaruh Teknik Penyerbukan Terhadap Pembentukan Buah Naga (Hylocereus polyrizhus) [The Effect of Pollination Technique to Fruit Development of Dragon Fruit (Hylocereus polyrizhus)],” J. Hortik., vol. 28, no. 2, p. 183, 2019, doi: 10.21082/jhort.v28n2.2018.p183-190.
[16] L. N. Ashlihatina, E. Purwanti, R. E. Susetyarini, H. Husamah, and D. Fatmawati, “Pengaruh Perlakuan Penambahan Daya Lampu Yang Berbeda Terhadap Kadar Klorofil dan Hasil Panen Tanaman Buah Naga (Hylocereus Cortaricensis),” in Repository Universitas Muhamadiyah Malang, 2019, vol. 8, no. 5, p. 55.
[17] I. D. Susanto and M. Rondhi, “Efek Inovasi Penyinaran Lampu Pada Usahatani Buah Naga Di Desa Bulurejo Kecamatan Purwoharjo Kabupaten Banyuwangi,” J. KIRANA, vol. 1, no. 2, p. 74, 2021, doi: 10.19184/jkrn.v1i2.21186.
[18] A. H. Saputra, I. G. A. Gunadi, and I. W. Wiraatmaja, “Efek Penggunaan Beberapa Sinar LED pada Tanaman Buah Naga Merah (Hylocereus polyrhizus),” Agrotrop J. Agric. Sci., vol. 10, no. 2, p. 201, 2020, doi: 10.24843/ajoas.2020.v10.i02.p09.
[19] C. I. Ferdianti and Sudarti, “Evektifitas Penyinaran Untuk Peningkatan Produksi Buah Naga,” Agrifarm J. Ilmu Pertan., vol. 10, no. 2, pp. 81–85, 2021, doi: 10.24903/ajip.v10i2.1075.
[20] S. Lee, “Panduan Utama Memilih Buah Naga yang Matang,” Number Analytics, 2025. https://www-numberanalytics-com
[21] D. Armiady, “Identifikasi Tingkat Kematangan Buah Naga Merah (Hylocereus Costaricensis) Melalui Pendekatan Artificial Neural Network (Ann),” J. TIKA, vol. 7, no. 3, pp. 265–273, 2022, doi: 10.51179/tika.v7i3.1576.
[22] A. R. Cahyono, R. Rahmadian, W. Aribowo, and A. L. Wardani, “Rancang Bangun Smart Agriculture PLTS untuk Penerangan Tanaman Buah Naga Menggunakan ESP32 dan Cayenne myDevices Rancang Bangun Smart Agriculture PLTS untuk Penerangan Tanaman Buah Naga Menggunakan ESP32 dan Cayenne myDevices,” J. Tek. Elektro, vol. 12, no. 2, pp. 106–116, 2023, doi: 10.26740/jte.v12n2.p106-116.
[23] M. A. Prasetyo and H. K. Wardana, “Rancang Bangun Monitoring Solar Tracking System Menggunakan Arduino dan Nodemcu Esp 8266 Berbasis IoT,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 2, p. 163, 2021, doi: 10.24853/resistor.4.2.163-168.
[24] M. F. Pratama, “Sistem Monitoring Dan Kontrol Daya Plts Menggunakan Iot Berbasis Fuzzy Logic,” Universitas Islam Sultan Agung Semarang, 2021. [Online]. Available: http://repository.unissula.ac.id/22976/12/Magister Teknik Elektro_20601700007_fullpdf.pdf
[25] N. G. Hariri, M. A. Almutawa, I. S. Osman, I. K. Almadani, A. M. Almahdi, and S. Ali, “Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application,” Appl. Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094758.
[26] P. Himawan, “Petani Buah Naga Banyuwangi Gunakan Metode Penyinaran Lampu Tingkatkan Panen,” Kabar Banyuwangi, 2025. https://kabarbanyuwangi.co.id/
[27] F. Masykur, M. B. Setyawan, and K. Winangun, “Optimalisasi Epoch Pada Klasifikasi Citra Daun Tanaman Padi Menggunakan Convolutional Neural Network (CNN) MobileNet,” CESS (Journal Comput. Eng. Syst. Sci., vol. 7, no. 2, p. 581, 2022, doi: 10.24114/cess.v7i2.37336.
[28] A. Mulyadi, F. Ardiyansyah, and C. F. Hadi, “Journal of Application and Science on Electrical Engineering Aplikasi Smart Clustering Pada Klasifikasi Buah Naga Menggunakan Metode,” J. Appl. Sci. Electr. Eng., vol. 4, no. 1, pp. 1–10, 2023, doi: 10.31328/jasee.
[29] A. Mulyadi, F. Ardiyansyah, and C. Fathul Hadi, “An Automatic Monitoring System for Dragon Fruit Using Convolutional Neural Networks (CNN) and Internet of Things (IoT),” Indones. J. Comput. Eng. Des., vol. 6, no. 1, pp. 30–41, 2024, doi: 10.35806/ijoced.v6i1.391.
[30] Ismail, Nurhikma Arifin, and Prihastinur, “Klasifikasi Kematangan Buah Naga Berdasarkan Fitur Warna Menggunakan Algoritma Multi-Class Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 121–126, 2023, doi: 10.51401/jinteks.v5i1.2203.
[31] P. Faradilla, S. F. Rezky, and R. Hamdani, “Implementasi Metode Kernel Konvolusi Dan Contrast Stretching Untuk Perbaikan Kualitas Citra Digital,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 6, p. 865, 2022, doi: 10.53513/jursi.v1i6.6297.
[32] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The Impact Of Class Imbalance In Classification Performance Metrics Based On The Binary Confusion Matrix,” Pattern Recognit., vol. 91, no. 19, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023.
[33] X. Li et al., “OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax Layer,” IEEE Trans. Image Process., vol. 29, no. May, pp. 6482–6495, 2020, doi: 10.1109/TIP.2020.2990277.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ENERGY: JURNAL ILMIAH ILMU-ILMU TEKNIK

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











