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Abstract
The emergence of large language models (LLMs), such as ChatGPT and GitHub

Copilot, has transformed software development, including in higher education.
Students can now easily create PHP code for Laravel web applications. This research
implements static code analysis with PHPStan to detect security vulnerabilities in
student-developed PHP code that is likely assisted by LLMs. The analysis was
performed on the full code of 28 capstone projects, focusing on student projects that
demonstrated patterns consistent with heavy LLM output use. The results show that
64.16% of LLM-assisted code often neglects data sanitization, uses raw queries
without parameterization, and contains vulnerable authentication logic. This study
contributes to web application security literacy for students and recommends static

analysis as a pedagogical and preventive tool.

Keywords: Large Language Models, Code Security, Static Code Analysis, Web

Development

1. Introduction

Advances in machine learning and artificial intelligence over the past decade
have fundamentally reshaped software engineering workflows. The emergence of
Large Language Models (LLMs), capable of generating code, explaining algorithms,
and offering refactoring suggestions, has driven the rise of Al-based code assistants
or Code Generation Tools (CGTs). These tools, trained on a large corpus of source

code, now function as Al "pair programmers" widely used in professional
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development and university-level programming courses [1], [2]. Their ability to
translate natural language descriptions into functional code has lowered the barrier
to entry for beginners and accelerated the prototyping process in academic settings
[3].

Despite these clear benefits, the rapid integration of LLMs into undergraduate
coursework raises serious concerns about how students develop programming
competence. While early studies emphasized productivity gains and reduced
frustration during coding tasks [4], [5] emerging evidence warns that the reliance on
LLM-generated solutions may weaken computational thinking and lead to
superficial understanding of program behavior [6], [7], [8], [9]. Instead of engaging
in iterative reasoning, students often adopt a prompt-driven workflow that shifts
programming from constructing solutions to selecting and adapting model outputs
[10].

Security concerns amplify these educational issues. Unlike compilers or static
analyzers, LLMs generate code probabilistically and do not perform semantic
verification or enforce secure design principles [11], [12]. As a result, they frequently
produce solutions that are functionally correct at the surface level but inherently
insecure in structure. Controlled studies have shown that LLMs can perform
competitively on introductory programming assessments, scoring up to 78% on
typical exams, but still embed serious vulnerabilities in the generated code[1], [13].
The reliance on these tools also fosters a "false sense of security" [14], leading novices
to bypass critical security inspection.

Recent security-focused analyses report that nearly 40% of LLM-generated
programs contain at least one exploitable weakness [12]. Common patterns observed
include Improper Input Validation (CWE-20), SQL Injection (CWE-89), Broken
Access Control (CWE-285, CWE-639), Authentication Failures (CWE-287), and
Hardcoded Credentials (CWE-798). These issues align with critical risks identified
in the OWASP Top 10 and can compromise confidentiality, integrity, and system
availability [15], [16]. The underlying cause stems from the nature of LLMs which
they reproduce statistical patterns found in training data including insecure idioms
without understanding security invariants [17], [18]. For instance, LLMs often
generate raw SQL queries without sanitization or authentication logic, lacking
proper authorization checks [19].

Existing literature tends to evaluate correctness, usability, or code quality in
isolation, leaving a critical gap in understanding how LLM-generated code impacts
novice developers in real academic environments. Few studies examine the
intersection of learning behavior, code security, and Al-assisted development,
particularly in undergraduate settings where students may treat Al suggestions as

authoritative.
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This study addresses these gaps by empirically analyzing vulnerabilities in
real-world PHP/Laravel applications developed by students with LLM assistance.
Through static code analysis using PHPStan and mapping to the OWASP Threat and
Safeguard Matrix (TaSM) [23], the research aims to identify prevailing vulnerability
patterns, understand how LLM usage influences security risks in educational
contexts, and demonstrate the potential of static analysis as an early-stage

pedagogical intervention.

2. Methods

This study employs an empirical research method that combines static code
analysis and vulnerability profiling to evaluate security weaknesses in Laravel-
based PHP applications developed with the assistance of Large Language Models
(LLMSs). The projects developed by the students have the following configuration:

1. XAMPP ver 8.1.25 (PHP 8.1.25, MariaDB 10.4.32)
2. Windows 11
3. Laravel 11.9

The methodology is designed to enable reproducibility through -clear
documentation of dataset selection, analysis tools, categorization schemes, and
validation steps, as seen in Figure 1. The research workflow consists of dataset
acquisition, filtering and validation, static code analysis, vulnerability classification,

and result interpretation.
2.1 Research Stages

This study adopts a descriptive-analytic design to examine the security posture
of student-developed web applications and to investigate patterns of vulnerabilities
linked to the implicit use of LLMs in programming tasks. The research design
focuses on two primary objectives: (1) to assess the prevalence of security
vulnerabilities in student code using static analysis, and (2) to classify and interpret
vulnerability patterns based on OWASP risk categories. The study integrates
quantitative measures (e.g., frequency of CWE categories) and qualitative inspection
(manual verification of code) to strengthen analytical validity.

2.2 Data Collection and Selection

The data for this study consists of capstone-level web application projects
developed by undergraduate students enrolled in a Web Development course. A
total of 30 projects were initially collected from students” public GitHub repositories.
Each project implemented a specific system using the Laravel framework to fulfill
instructional learning objectives. Only 28 projects were included in the analysis after

applying the following selection criteria, as seen in Table 1.
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Tabel 2. Project Criteria to be Used in The Research

Inclusion Criteria Exclusion Criteria
e The project must be a functional e Projects not using Laravel 11 (1
web application built using eliminated).
Laravel 11.
e The codebase must be publicly e Projects that failed to run due to
accessible via GitHub. missing dependencies or broken

configuration (1 eliminated).
e The project must include
application logic, routing,
database access, and
authentication modules.

Although the use of LLMs, such as ChatGPT or GitHub Copilot, was neither
required nor explicitly documented by students, an initial survey and code pattern
inspection were used to identify likely LLM usage. Indicators included repetitive
coding patterns, generic error messages, boilerplate CRUD templates, and identical

function naming patterns typical of Al-generated suggestions.

— .

Code Generation Output Repository

Figure 1. Process of Developing Datasets

2.3 Vulnerability Categories

Vulnerability detection in this study was conducted using the Common
Weakness Enumeration (CWE) taxonomy mapped to security risk categories from
OWASP [20]. Only code-level weaknesses relevant to PHP and Laravel were
analyzed. Vulnerabilities were grouped into five primary categories, as seen in
Table 2

These categories were selected based on their prevalence in prior empirical
studies on LLM-generated code and their alignment with the OWASP Top 10 (2021)
web application security risks.

2.4 Static Analysis Procedure

Static analysis was conducted using PHPStan configured at Level 8, which
enforces strict static type and structure validation. Although PHPStan is primarily
designed for code consistency and reliability checks, rather than explicit security

scanning, its rule engine has been extended with custom configurations to detect
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patterns associated with security weaknesses. Thus, static analysis was applied to
the 28 validated Laravel projects, specifically targeting the /app, /routes, and /config
directories. These extensions targeted insecure Laravel usage patterns, such as:
a) Direct use of raw database queries (DB::select, DB::statement) without query
binding
b) Missing input validation using $request->validate()
¢) Route definitions without authentication or authorization middleware

d) Unsafe file handling (Storage::get or File::get without sanitization)

Tabel 2. Vulnerability Categories According to CWE Reference

Category Description CWE Reference
Impro'per.Input Lack of samtlzat.lon/vahdatlon of user CWE-20
Validation inputs

Unprotected routes or unauthorized

. CWE-285, CWE-639
operations

Broken Access Control

SQL Injection Unsafe query execution via raw input CWE-89

Weak or missing authentication

CWE-287
controls

Authentication Failures

API keys or credentials stored in

Hardcoded Secrets
source code

CWE-798

For each repository, PHPStan was executed recursively on the /app, /routes,
and /config directories using a standardized configuration file to maintain
consistency across all analyses. The tool generated structured reports containing
detected issues, which were then exported in JSON format for post-processing and

classification.
2.5 Construction of Vulnerability Matrix

To provide a structured interpretation of detected weaknesses, results were
mapped into a Vulnerability Threat Matrix adapted from the OWASP Threat and
Safeguard Matrix (TaSM). This matrix not only quantifies the security posture of the
analyzed projects but also provides a pedagogical tool for students to understand
how vulnerabilities evolve from coding errors to exploitable conditions. Each entry
is classified by five dimensions: Threat Source, Weakness Type (CWE), Attack
Vector, Impact, and Recommended Mitigation, as seen in Table 3.

The final vulnerability matrix was validated through manual inspection by
two reviewers with secure coding expertise to ensure consistency and eliminate false

positives.
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Tabel 3. Vulnerability Matrix based on TaSM

Weakness Potential Recommended
Threat Source Attack Vector e .
Type (CWE) Impact Mitigation
External user / CWE-20 Unsanitized user Data Implement Laravel
API client input via forms or corruption, validation rules using
API parameters injection, or  Request::validate() and
XSS attacks sanitize input data.
Unauthorized CWE-285 Accessing Unauthorized Use Laravel
user/endpoint unprotected data access,  middleware (auth, can)
routes or hidden privilege and define route
endpoints escalation authorization in
web.php.
Malicious CWE-89 Direct query Data theft, Use Laravel Eloquent
query/attacker execution using database ORM or parameterized
DB::select() with corruption queries to prevent SQL
unsanitized injection.
variables
Insider/developer CWE-798 Credentials or Unauthorized Store secrets in .env
oversight API keys stored in  system or API file; never commit
source files access credentials to version
control.
Unauthenticated CWE-287 Missing or weak  Unauthorized Implement Laravel
user authentication system entry, authentication
mechanism session scaffolding and hashed
hijacking passwords using
berypt.

3.Results and Discussion
3.1 Quantitative Analysis of Vulnerability Patterns

Static analysis was performed on 28 validated Laravel 11 projects using
PHPStan at level 8. The analysis identified a total of 173 vulnerability instances
distributed across five primary CWE categories. Tabel 4 presents the detailed
distribution of vulnerabilities per category.

The data indicate that Improper Input Validation (CWE-20) and Broken Access
Control (CWE-285) account for approximately 64.16% of all detected vulnerabilities.
These weaknesses represent fundamental lapses in secure coding awareness rather
than complex attack surfaces.

Moreover, projects that relied more heavily on generated snippets showed a
24.27% higher occurrence of CWE-89 and CWE-798 vulnerabilities, suggesting an
increased dependency on insecure example patterns embedded in the generated
code.

3.2 Example of Vulnerability Code Snippet

The research uncovered several concrete code snippets with identified

vulnerabilities, as detailed below:
a. SQL Injection:
$query = "SELECT * FROM users WHERE email =" . \$_POST['email'] ."";
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$result = DB::select($query);
b. Authentication Failures (Login without token validation or rate-limiting):
if (\$request->input(‘password’) == 'admin123’) {
a. Auth:loginUsingld(1);
}
c. Hardcoded Credentials (Store credentials explicitly):
\$apiKey = "sk_test_51H...";
d. Improper Input Validation:
\$book = new Book();
\$book->title = \$_POST][ 'title'];
\$book->save();
e. Broken Access Control:

Route::get('/admin/deleteUser', [AdminController::class, 'delete’]

Tabel 4. Vulnerability Frequency by CWE Category

CWE Category Occurrences Percentage (%) Severity
(High/Med/Low)

CWE-20 Improper Input 64 36.99 High
Validation
CWE-285 Broken Access 47 27.17 High
Control
CWE-89 SQL Injection 23 13.29 High
CWE-798 Hardcoded 19 10.98 Medium
Credentials
CWE-287 Authentication 20 11.57 Medium
Failures

Total 173 100 —

3.3 Root Cause of Security Weaknesses

The vulnerabilities identified in LLM-assisted code are not isolated occurrences
but the result of deeper behavioral, cognitive, and contextual shortcomings in how
novice developers interact with Al-based code generation tools. The root causes
discussed below were not derived from primary data (e.g., interviews or surveys),
but were systematically inferred through a qualitative, manual review of the 173
vulnerable code segments identified by PHPStan's static analysis, cross-referenced

with established educational and security literature.
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a. Over-Trust in Generated Code (False Sense of Correctness)

One of the most pervasive causes of security weaknesses is the over-trust
novice developers place in the syntactic and functional correctness of
generated code. Students often assume that since the code compiles and runs
without errors, it must also be secure and efficient. This false sense of security
discourages deeper inspection and rigorous security testing, aligning directly
with the findings of Perry et al. [14], which documents that the use of Al
assistants increases the likelihood of insecure code introduction among
developers. In several analyzed projects, students directly deployed code
suggested by the model without manual verification, resulting in exploitable
flaws such as unsanitized SQL queries and missing authentication logic.

For example, one project included the following vulnerable snippet:
$results = DB:select("SELECT * FROM users WHERE email = '$request-
>email");

The above code appears functional and produces correct query results,
yet it allows for SQL injection due to unsanitized user input. The student relied
entirely on model output, assuming correctness because the query executed
successfully.

b. Lack of Contextual Validation (Input Handling and Access Control)

LLM-generated code typically lacks context awareness beyond the
immediate prompt, resulting in incomplete implementations that omit critical
validation or access control mechanisms. This limitation is particularly evident
in frameworks like Laravel, where developers must explicitly define
middleware or input validation layers.

In multiple cases, generated controller methods failed to use built-in
validation features such as Request::validate() or form request classes.
Similarly, routes lacked middleware enforcement, allowing unrestricted access
to administrative endpoints. These omissions stem from the model’s inability
to infer application-level security policies and the student’s inexperience in
compensating for such gaps.

Route::get('/admin’, [AdminController:class, 'index']);

Without explicit authentication middleware, the above route exposes
sensitive functionality to unauthorized users. Students often overlooked this
omission because the page rendered correctly during testing, reinforcing their
misplaced trust in the generated code. This behavior is indicative of cognitive
offloading[21], where students prioritize functional completion over a deeper

understanding of security invariants.
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c¢. Copy-Paste and Prompt Reuse Behavior

Another observed contributor is the copy-paste culture reinforced by
prompt reuse behavior. Many students reused generated snippets from prior
tasks or online sources without fully understanding their functionality. This
led to inconsistencies in data validation and security policies across the same
application.

For instance, a student reused an earlier API controller template
generated by the model, resulting in mismatched input sanitization between
modules. Inconsistent application of security controls made the system more
susceptible to injection and logic manipulation attacks. The convenience of
LLM outputs inadvertently encouraged fragmented and redundant coding

practices rather than deliberate, secure design [22].

3.4 Security Implications and Industry Practices

Based on these research findings, it can be concluded that using LLM without
a basic understanding of security poses a high risk. Therefore, for industrial contexts,
the adoption of static code analysis tools must be an integral part of the DevSecOps
workflow. This research can also provide a real contribution to the development of
secure guidelines for the use of LLMs by novice developers. If these findings are
integrated into industrial and academic practices, the productivity generated by

LLM can be in line with the security of the resulting system.

4. Conclusion

This research demonstrates that the use of LLMs in application development
by students, while accelerating the programming process, still has implications for
the security aspects of the resulting software. Analysis of 28 LLM-based Laravel
projects revealed a uniform pattern of error, dominated by fundamental weaknesses
in Improper Input Validation (CWE-20) and Broken Access Control (CWE-285),
which together constitute over 64% of all 173 detected instances. This uniformity
indicates a critical over-reliance on LLM output without adequate human security
review, fostering a false sense of security among students.

The study’s primary contribution is twofold: it provides empirical evidence of
specific security risks in LLM-assisted PHP/Laravel code and demonstrates the
efficacy of a PHPStan-based static analysis pipeline, enhanced with custom rules, as
a scalable method for early vulnerability detection.

From a practical and pedagogical standpoint, these findings underscore the
necessity of integrating security literacy directly into computer science curricula.
Academic institutions must emphasize the systematic use of automated tools as a

preventive measure and utilize frameworks like the OWASP Threat and Safeguard
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Matrix (TaSM) to translate abstract security concepts into concrete mitigation
actions.

For future research, we recommend expanding the analysis by integrating
multi-tool static analysis to cover more complex logical flaws and conducting an
empirical experiment using a TaSM-based pedagogical intervention to measure its
effectiveness in improving students' secure coding proficiency when they utilize
LLMs.
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