

Type of

Contribution:

Research Paper

Review Paper

Case Study

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 239

E-ISSN: 2962-2565

ENERGY: JURNAL ILMIAH

ILMU-ILMU TEKNIK

Vol. 15, No. 2 (2025) pp 239-250

DOI: 10.51747/energy.v15i2.15210

 Implementation of Static Code Analysis to

Detect Vulnerabilities in Applications

Developed with the Assistance of Large-

Language Models (LLM)
Arnold Nasir1*, Kasmir Syariati1, Citra Suardi1, David Sundoro1, Juan Salao

Biantong1, Reinaldo Lewis Lordianto1

1 Informatics (Makassar City Campus), Ciputra University, 60219, Indonesia

*arnold.nasir10@gmail.com

Abstract

The emergence of large language models (LLMs), such as ChatGPT and GitHub

Copilot, has transformed software development, including in higher education.

Students can now easily create PHP code for Laravel web applications. This research

implements static code analysis with PHPStan to detect security vulnerabilities in

student-developed PHP code that is likely assisted by LLMs. The analysis was

performed on the full code of 28 capstone projects, focusing on student projects that

demonstrated patterns consistent with heavy LLM output use. The results show that

64.16% of LLM-assisted code often neglects data sanitization, uses raw queries

without parameterization, and contains vulnerable authentication logic. This study

contributes to web application security literacy for students and recommends static

analysis as a pedagogical and preventive tool.

Keywords: Large Language Models, Code Security, Static Code Analysis, Web

Development

1. Introduction

Advances in machine learning and artificial intelligence over the past decade

have fundamentally reshaped software engineering workflows. The emergence of

Large Language Models (LLMs), capable of generating code, explaining algorithms,

and offering refactoring suggestions, has driven the rise of AI-based code assistants

or Code Generation Tools (CGTs). These tools, trained on a large corpus of source

code, now function as AI "pair programmers" widely used in professional

This article

contributes to:

Article Info

Submitted:

2025-10-25

Revised:

2025-11-28

Accepted:

2025-11-29

Published:

2025-11-30

This work is

licensed under a

Creative

Commons

Attribution-

NonCommercial

4.0 International

License

Publisher

Universitas

Panca Marga

mailto:arnold.nasir10@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://sdgs.un.org/goals
https://sdgs.un.org/goals/goal9

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 240

development and university-level programming courses [1], [2]. Their ability to

translate natural language descriptions into functional code has lowered the barrier

to entry for beginners and accelerated the prototyping process in academic settings

[3].

Despite these clear benefits, the rapid integration of LLMs into undergraduate

coursework raises serious concerns about how students develop programming

competence. While early studies emphasized productivity gains and reduced

frustration during coding tasks [4], [5] emerging evidence warns that the reliance on

LLM-generated solutions may weaken computational thinking and lead to

superficial understanding of program behavior [6], [7], [8], [9]. Instead of engaging

in iterative reasoning, students often adopt a prompt-driven workflow that shifts

programming from constructing solutions to selecting and adapting model outputs

[10].

Security concerns amplify these educational issues. Unlike compilers or static

analyzers, LLMs generate code probabilistically and do not perform semantic

verification or enforce secure design principles [11], [12]. As a result, they frequently

produce solutions that are functionally correct at the surface level but inherently

insecure in structure. Controlled studies have shown that LLMs can perform

competitively on introductory programming assessments, scoring up to 78% on

typical exams, but still embed serious vulnerabilities in the generated code[1], [13].

The reliance on these tools also fosters a "false sense of security" [14], leading novices

to bypass critical security inspection.

Recent security-focused analyses report that nearly 40% of LLM-generated

programs contain at least one exploitable weakness [12]. Common patterns observed

include Improper Input Validation (CWE-20), SQL Injection (CWE-89), Broken

Access Control (CWE-285, CWE-639), Authentication Failures (CWE-287), and

Hardcoded Credentials (CWE-798). These issues align with critical risks identified

in the OWASP Top 10 and can compromise confidentiality, integrity, and system

availability [15], [16]. The underlying cause stems from the nature of LLMs which

they reproduce statistical patterns found in training data including insecure idioms

without understanding security invariants [17], [18]. For instance, LLMs often

generate raw SQL queries without sanitization or authentication logic, lacking

proper authorization checks [19].

Existing literature tends to evaluate correctness, usability, or code quality in

isolation, leaving a critical gap in understanding how LLM-generated code impacts

novice developers in real academic environments. Few studies examine the

intersection of learning behavior, code security, and AI-assisted development,

particularly in undergraduate settings where students may treat AI suggestions as

authoritative.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 241

This study addresses these gaps by empirically analyzing vulnerabilities in

real-world PHP/Laravel applications developed by students with LLM assistance.

Through static code analysis using PHPStan and mapping to the OWASP Threat and

Safeguard Matrix (TaSM) [23], the research aims to identify prevailing vulnerability

patterns, understand how LLM usage influences security risks in educational

contexts, and demonstrate the potential of static analysis as an early-stage

pedagogical intervention.

2. Methods

This study employs an empirical research method that combines static code

analysis and vulnerability profiling to evaluate security weaknesses in Laravel-

based PHP applications developed with the assistance of Large Language Models

(LLMs). The projects developed by the students have the following configuration:

1. XAMPP ver 8.1.25 (PHP 8.1.25, MariaDB 10.4.32)

2. Windows 11

3. Laravel 11.9

The methodology is designed to enable reproducibility through clear

documentation of dataset selection, analysis tools, categorization schemes, and

validation steps, as seen in Figure 1. The research workflow consists of dataset

acquisition, filtering and validation, static code analysis, vulnerability classification,

and result interpretation.

2.1 Research Stages

This study adopts a descriptive-analytic design to examine the security posture

of student-developed web applications and to investigate patterns of vulnerabilities

linked to the implicit use of LLMs in programming tasks. The research design

focuses on two primary objectives: (1) to assess the prevalence of security

vulnerabilities in student code using static analysis, and (2) to classify and interpret

vulnerability patterns based on OWASP risk categories. The study integrates

quantitative measures (e.g., frequency of CWE categories) and qualitative inspection

(manual verification of code) to strengthen analytical validity.

2.2 Data Collection and Selection

The data for this study consists of capstone-level web application projects

developed by undergraduate students enrolled in a Web Development course. A

total of 30 projects were initially collected from students’ public GitHub repositories.

Each project implemented a specific system using the Laravel framework to fulfill

instructional learning objectives. Only 28 projects were included in the analysis after

applying the following selection criteria, as seen in Table 1.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 242

Tabel 2. Project Criteria to be Used in The Research

Inclusion Criteria Exclusion Criteria

• The project must be a functional

web application built using

Laravel 11.

• The codebase must be publicly

accessible via GitHub.

• The project must include

application logic, routing,

database access, and

authentication modules.

• Projects not using Laravel 11 (1

eliminated).

• Projects that failed to run due to

missing dependencies or broken

configuration (1 eliminated).

Although the use of LLMs, such as ChatGPT or GitHub Copilot, was neither

required nor explicitly documented by students, an initial survey and code pattern

inspection were used to identify likely LLM usage. Indicators included repetitive

coding patterns, generic error messages, boilerplate CRUD templates, and identical

function naming patterns typical of AI-generated suggestions.

Figure 1. Process of Developing Datasets

2.3 Vulnerability Categories

Vulnerability detection in this study was conducted using the Common

Weakness Enumeration (CWE) taxonomy mapped to security risk categories from

OWASP [20]. Only code-level weaknesses relevant to PHP and Laravel were

analyzed. Vulnerabilities were grouped into five primary categories, as seen in

Table 2.

These categories were selected based on their prevalence in prior empirical

studies on LLM-generated code and their alignment with the OWASP Top 10 (2021)

web application security risks.

2.4 Static Analysis Procedure

Static analysis was conducted using PHPStan configured at Level 8, which

enforces strict static type and structure validation. Although PHPStan is primarily

designed for code consistency and reliability checks, rather than explicit security

scanning, its rule engine has been extended with custom configurations to detect

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 243

patterns associated with security weaknesses. Thus, static analysis was applied to

the 28 validated Laravel projects, specifically targeting the /app, /routes, and /config

directories. These extensions targeted insecure Laravel usage patterns, such as:

a) Direct use of raw database queries (DB::select, DB::statement) without query

binding

b) Missing input validation using $request->validate()

c) Route definitions without authentication or authorization middleware

d) Unsafe file handling (Storage::get or File::get without sanitization)

Tabel 2. Vulnerability Categories According to CWE Reference

Category Description CWE Reference

Improper Input

Validation

Lack of sanitization/validation of user

inputs
CWE-20

Broken Access Control
Unprotected routes or unauthorized

operations
CWE-285, CWE-639

SQL Injection Unsafe query execution via raw input CWE-89

Authentication Failures
Weak or missing authentication

controls
CWE-287

Hardcoded Secrets
API keys or credentials stored in

source code
CWE-798

For each repository, PHPStan was executed recursively on the /app, /routes,

and /config directories using a standardized configuration file to maintain

consistency across all analyses. The tool generated structured reports containing

detected issues, which were then exported in JSON format for post-processing and

classification.

2.5 Construction of Vulnerability Matrix

To provide a structured interpretation of detected weaknesses, results were

mapped into a Vulnerability Threat Matrix adapted from the OWASP Threat and

Safeguard Matrix (TaSM). This matrix not only quantifies the security posture of the

analyzed projects but also provides a pedagogical tool for students to understand

how vulnerabilities evolve from coding errors to exploitable conditions. Each entry

is classified by five dimensions: Threat Source, Weakness Type (CWE), Attack

Vector, Impact, and Recommended Mitigation, as seen in Table 3.

The final vulnerability matrix was validated through manual inspection by

two reviewers with secure coding expertise to ensure consistency and eliminate false

positives.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 244

Tabel 3. Vulnerability Matrix based on TaSM

Threat Source
Weakness

Type (CWE)
Attack Vector

Potential

Impact

Recommended

Mitigation

External user /

API client

CWE-20 Unsanitized user

input via forms or

API parameters

Data

corruption,

injection, or

XSS attacks

Implement Laravel

validation rules using

Request::validate() and

sanitize input data.

Unauthorized

user/endpoint

CWE-285 Accessing

unprotected

routes or hidden

endpoints

Unauthorized

data access,

privilege

escalation

Use Laravel

middleware (auth, can)

and define route

authorization in

web.php.

Malicious

query/attacker

CWE-89 Direct query

execution using

DB::select() with

unsanitized

variables

Data theft,

database

corruption

Use Laravel Eloquent

ORM or parameterized

queries to prevent SQL

injection.

Insider/developer

oversight

CWE-798 Credentials or

API keys stored in

source files

Unauthorized

system or API

access

Store secrets in .env

file; never commit

credentials to version

control.

Unauthenticated

user

CWE-287 Missing or weak

authentication

mechanism

Unauthorized

system entry,

session

hijacking

Implement Laravel

authentication

scaffolding and hashed

passwords using

bcrypt.

3.Results and Discussion

3.1 Quantitative Analysis of Vulnerability Patterns

Static analysis was performed on 28 validated Laravel 11 projects using

PHPStan at level 8. The analysis identified a total of 173 vulnerability instances

distributed across five primary CWE categories. Tabel 4 presents the detailed

distribution of vulnerabilities per category.

The data indicate that Improper Input Validation (CWE-20) and Broken Access

Control (CWE-285) account for approximately 64.16% of all detected vulnerabilities.

These weaknesses represent fundamental lapses in secure coding awareness rather

than complex attack surfaces.

Moreover, projects that relied more heavily on generated snippets showed a

24.27% higher occurrence of CWE-89 and CWE-798 vulnerabilities, suggesting an

increased dependency on insecure example patterns embedded in the generated

code.

3.2 Example of Vulnerability Code Snippet

The research uncovered several concrete code snippets with identified

vulnerabilities, as detailed below:

a. SQL Injection:

$query = "SELECT * FROM users WHERE email = '" . \$_POST['email'] ."'";

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 245

$result = DB::select($query);

b. Authentication Failures (Login without token validation or rate-limiting):

if (\$request->input('password') == 'admin123') {

a. Auth::loginUsingId(1);

}

c. Hardcoded Credentials (Store credentials explicitly):

\$apiKey = "sk_test_51H...";

d. Improper Input Validation:

\$book = new Book();

\$book->title = \$_POST['title'];

\$book->save();

e. Broken Access Control:

Route::get('/admin/deleteUser', [AdminController::class, 'delete']

Tabel 4. Vulnerability Frequency by CWE Category

CWE Category Occurrences Percentage (%) Severity

(High/Med/Low)

CWE-20 Improper Input

Validation

64 36.99 High

CWE-285 Broken Access

Control

47 27.17 High

CWE-89 SQL Injection 23 13.29 High

CWE-798 Hardcoded

Credentials

19 10.98 Medium

CWE-287 Authentication

Failures

20 11.57 Medium

Total 173 100 —

3.3 Root Cause of Security Weaknesses

The vulnerabilities identified in LLM-assisted code are not isolated occurrences

but the result of deeper behavioral, cognitive, and contextual shortcomings in how

novice developers interact with AI-based code generation tools. The root causes

discussed below were not derived from primary data (e.g., interviews or surveys),

but were systematically inferred through a qualitative, manual review of the 173

vulnerable code segments identified by PHPStan's static analysis, cross-referenced

with established educational and security literature.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 246

a. Over-Trust in Generated Code (False Sense of Correctness)

One of the most pervasive causes of security weaknesses is the over-trust

novice developers place in the syntactic and functional correctness of

generated code. Students often assume that since the code compiles and runs

without errors, it must also be secure and efficient. This false sense of security

discourages deeper inspection and rigorous security testing, aligning directly

with the findings of Perry et al. [14], which documents that the use of AI

assistants increases the likelihood of insecure code introduction among

developers. In several analyzed projects, students directly deployed code

suggested by the model without manual verification, resulting in exploitable

flaws such as unsanitized SQL queries and missing authentication logic.

For example, one project included the following vulnerable snippet:

$results = DB::select("SELECT * FROM users WHERE email = '$request-

>email'");

The above code appears functional and produces correct query results,

yet it allows for SQL injection due to unsanitized user input. The student relied

entirely on model output, assuming correctness because the query executed

successfully.

b. Lack of Contextual Validation (Input Handling and Access Control)

LLM-generated code typically lacks context awareness beyond the

immediate prompt, resulting in incomplete implementations that omit critical

validation or access control mechanisms. This limitation is particularly evident

in frameworks like Laravel, where developers must explicitly define

middleware or input validation layers.

In multiple cases, generated controller methods failed to use built-in

validation features such as Request::validate() or form request classes.

Similarly, routes lacked middleware enforcement, allowing unrestricted access

to administrative endpoints. These omissions stem from the model’s inability

to infer application-level security policies and the student’s inexperience in

compensating for such gaps.

Route::get('/admin', [AdminController::class, 'index']);

Without explicit authentication middleware, the above route exposes

sensitive functionality to unauthorized users. Students often overlooked this

omission because the page rendered correctly during testing, reinforcing their

misplaced trust in the generated code. This behavior is indicative of cognitive

offloading[21], where students prioritize functional completion over a deeper

understanding of security invariants.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 247

c. Copy-Paste and Prompt Reuse Behavior

Another observed contributor is the copy-paste culture reinforced by

prompt reuse behavior. Many students reused generated snippets from prior

tasks or online sources without fully understanding their functionality. This

led to inconsistencies in data validation and security policies across the same

application.

For instance, a student reused an earlier API controller template

generated by the model, resulting in mismatched input sanitization between

modules. Inconsistent application of security controls made the system more

susceptible to injection and logic manipulation attacks. The convenience of

LLM outputs inadvertently encouraged fragmented and redundant coding

practices rather than deliberate, secure design [22].

3.4 Security Implications and Industry Practices

Based on these research findings, it can be concluded that using LLM without

a basic understanding of security poses a high risk. Therefore, for industrial contexts,

the adoption of static code analysis tools must be an integral part of the DevSecOps

workflow. This research can also provide a real contribution to the development of

secure guidelines for the use of LLMs by novice developers. If these findings are

integrated into industrial and academic practices, the productivity generated by

LLM can be in line with the security of the resulting system.

4. Conclusion

This research demonstrates that the use of LLMs in application development

by students, while accelerating the programming process, still has implications for

the security aspects of the resulting software. Analysis of 28 LLM-based Laravel

projects revealed a uniform pattern of error, dominated by fundamental weaknesses

in Improper Input Validation (CWE-20) and Broken Access Control (CWE-285),

which together constitute over 64% of all 173 detected instances. This uniformity

indicates a critical over-reliance on LLM output without adequate human security

review, fostering a false sense of security among students.

The study’s primary contribution is twofold: it provides empirical evidence of

specific security risks in LLM-assisted PHP/Laravel code and demonstrates the

efficacy of a PHPStan-based static analysis pipeline, enhanced with custom rules, as

a scalable method for early vulnerability detection.

From a practical and pedagogical standpoint, these findings underscore the

necessity of integrating security literacy directly into computer science curricula.

Academic institutions must emphasize the systematic use of automated tools as a

preventive measure and utilize frameworks like the OWASP Threat and Safeguard

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 248

Matrix (TaSM) to translate abstract security concepts into concrete mitigation

actions.

For future research, we recommend expanding the analysis by integrating

multi-tool static analysis to cover more complex logical flaws and conducting an

empirical experiment using a TaSM-based pedagogical intervention to measure its

effectiveness in improving students' secure coding proficiency when they utilize

LLMs.

Authors’ Declaration

Authors’ contributions and responsibilities - The authors made substantial

contributions to the conception and design of the study. The authors took

responsibility for data analysis, interpretation, and discussion of results. The authors

read and approved the final manuscript.

Funding - Basic Research Program for Beginners (PDP) from the Directorate of

Research, Technology, and Community Service (DPPM) of the Ministry of Higher

Education, Science, and Technology.

Availability of data and materials - All data is available from the authors.

Competing interests - The authors declare no competing interest.

Additional information - No additional information from the authors.

References

[1] H. Tian et al., “Is ChatGPT the Ultimate Programming Assistant -- How far is

it?,” Aug. 31, 2023, arXiv: arXiv:2304.11938. doi: 10.48550/arXiv.2304.11938.

[2] S. Lau and P. Guo, “From ‘Ban It Till We Understand It’ to ‘Resistance is

Futile’: How University Programming Instructors Plan to Adapt as More

Students Use AI Code Generation and Explanation Tools such as ChatGPT and

GitHub Copilot,” in Proceedings of the 2023 ACM Conference on International

Computing Education Research V.1, Chicago IL USA: ACM, Aug. 2023, pp.

106–121. doi: 10.1145/3568813.3600138.

[3] J. Savelka, A. Agarwal, C. Bogart, Y. Song, and M. Sakr, “Can Generative Pre-

trained Transformers (GPT) Pass Assessments in Higher Education

Programming Courses?,” in Proceedings of the 2023 Conference on Innovation

and Technology in Computer Science Education V. 1, June 2023, pp. 117–123.

doi: 10.1145/3587102.3588792.

[4] I. R. da S. Simões and E. Venson, “Evaluating Source Code Quality with Large

Language Models: a comparative study,” Sept. 22, 2024, arXiv:

arXiv:2408.07082. doi: 10.48550/arXiv.2408.07082.

[5] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Kujanpää, and J. Sorva,

“Exploring the Responses of Large Language Models to Beginner

Programmers’ Help Requests,” in Proceedings of the 2023 ACM Conference

on International Computing Education Research V.1, Chicago IL USA: ACM,

Aug. 2023, pp. 93–105. doi: 10.1145/3568813.3600139.

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 249

[6] Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang, “No Need to Lift a Finger

Anymore? Assessing the Quality of Code Generation by ChatGPT,” Apr. 13,

2024, arXiv: arXiv:2308.04838. doi: 10.48550/arXiv.2308.04838.

[7] J. Savelka, A. Agarwal, M. An, C. Bogart, and M. Sakr, “Thrilled by Your

Progress! Large Language Models (GPT-4) No Longer Struggle to Pass

Assessments in Higher Education Programming Courses,” in Proceedings of

the 2023 ACM Conference on International Computing Education Research

V.1, Chicago IL USA: ACM, Aug. 2023, pp. 78–92. doi:

10.1145/3568813.3600142.

[8] O. Asare, M. Nagappan, and N. Asokan, “Is GitHub’s Copilot as Bad as

Humans at Introducing Vulnerabilities in Code?,” Jan. 06, 2024, arXiv:

arXiv:2204.04741. doi: 10.48550/arXiv.2204.04741.

[9] P. Denny et al., “Computing Education in the Era of Generative AI,” Commun.

ACM, vol. 67, no. 2, pp. 56–67, Feb. 2024, doi: 10.1145/3624720.

[10] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather, and E. A.

Santos, “Programming Is Hard -- Or at Least It Used to Be: Educational

Opportunities And Challenges of AI Code Generation,” Dec. 02, 2022, arXiv:

arXiv:2212.01020. doi: 10.48550/arXiv.2212.01020.

[11] S. Dou et al., “What’s Wrong with Your Code Generated by Large Language

Models? An Extensive Study,” July 08, 2024, arXiv: arXiv:2407.06153. doi:

10.48550/arXiv.2407.06153.

[12] A. M. Dakhel et al., “GitHub Copilot AI pair programmer: Asset or Liability?,”

Apr. 14, 2023, arXiv: arXiv:2206.15331. doi: 10.48550/arXiv.2206.15331.

[13] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “ChatGPT and Software

Testing Education: Promises & Perils,” in 2023 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), Apr.

2023, pp. 4130–4137. doi: 10.1109/ICSTW58534.2023.00078.

[14] N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do Users Write More

Insecure Code with AI Assistants?,” in Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security, Copenhagen

Denmark: ACM, Nov. 2023, pp. 2785–2799. doi: 10.1145/3576915.3623157.

[15] “OWASP Top Ten | OWASP Foundation.” Accessed: Oct. 24, 2025. [Online].

Available: https://owasp.org/www-project-top-ten/

[16] S. Elder, N. Zahan, V. Kozarev, R. Shu, T. Menzies, and L. Williams,

“Structuring a Comprehensive Software Security Course Around the OWASP

Application Security Verification Standard,” in 2021 IEEE/ACM 43rd

International Conference on Software Engineering: Software Engineering

Education and Training (ICSE-SEET), Madrid, ES: IEEE, May 2021, pp. 95–104.

doi: 10.1109/ICSE-SEET52601.2021.00019.

[17] M. L. Siddiq, J. C. S. Santos, S. Devareddy, and A. Muller, “SALLM: Security

Assessment of Generated Code,” in Proceedings of the 39th IEEE/ACM

International Conference on Automated Software Engineering Workshops,

Oct. 2024, pp. 54–65. doi: 10.1145/3691621.3694934.

[18] J. J. Wu, “Large Language Models Should Ask Clarifying Questions to Increase

Confidence in Generated Code,” Jan. 22, 2024, arXiv: arXiv:2308.13507. doi:

Arnold Nasir, Kasmir Syariati, Citra Suardi, David Sundoro, Juan Salao Biantong, Reinaldo Lewis Lordianto

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 250

10.48550/arXiv.2308.13507.

[19] C. Zhang, Z. Wang, R. Mangal, M. Fredrikson, L. Jia, and C. Pasareanu,

“Transfer Attacks and Defenses for Large Language Models on Coding

Tasks,” Nov. 22, 2023, arXiv: arXiv:2311.13445. doi: 10.48550/arXiv.2311.13445.

[20] “CWE - Common Weakness Enumeration.” Accessed: Oct. 24, 2025. [Online].

Available: https://cwe.mitre.org/

[21] R. Zviel-Girshin, “The Good and Bad of AI Tools in Novice Programming

Education,” Educ. Sci., vol. 14, no. 10, p. 1089, Oct. 2024, doi:

10.3390/educsci14101089.

[22] G. Fan, D. Liu, R. Zhang, and L. Pan, “The impact of AI-assisted pair

programming on student motivation, programming anxiety, collaborative

learning, and programming performance: a comparative study with

traditional pair programming and individual approaches,” Int. J. STEM Educ.,

vol. 12, no. 1, p. 16, Mar. 2025, doi: 10.1186/s40594-025-00537-3.

