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Abstract 

The emergence of large language models (LLMs), such as ChatGPT and GitHub 

Copilot, has transformed software development, including in higher education. 

Students can now easily create PHP code for Laravel web applications. This research 

implements static code analysis with PHPStan to detect security vulnerabilities in 

student-developed PHP code that is likely assisted by LLMs. The analysis was 

performed on the full code of 28 capstone projects, focusing on student projects that 

demonstrated patterns consistent with heavy LLM output use. The results show that 

64.16% of LLM-assisted code often neglects data sanitization, uses raw queries 

without parameterization, and contains vulnerable authentication logic. This study 

contributes to web application security literacy for students and recommends static 

analysis as a pedagogical and preventive tool. 

Keywords: Large Language Models, Code Security, Static Code Analysis, Web 

Development 

 
1. Introduction 

Advances in machine learning and artificial intelligence over the past decade 

have fundamentally reshaped software engineering workflows. The emergence of 

Large Language Models (LLMs), capable of generating code, explaining algorithms, 

and offering refactoring suggestions, has driven the rise of AI-based code assistants 

or Code Generation Tools (CGTs). These tools, trained on a large corpus of source 

code, now function as AI "pair programmers" widely used in professional 
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development and university-level programming courses [1], [2]. Their ability to 

translate natural language descriptions into functional code has lowered the barrier 

to entry for beginners and accelerated the prototyping process in academic settings 

[3]. 

Despite these clear benefits, the rapid integration of LLMs into undergraduate 

coursework raises serious concerns about how students develop programming 

competence. While early studies emphasized productivity gains and reduced 

frustration during coding tasks [4], [5] emerging evidence warns that the reliance on 

LLM-generated solutions may weaken computational thinking and lead to 

superficial understanding of program behavior [6], [7], [8], [9]. Instead of engaging 

in iterative reasoning, students often adopt a prompt-driven workflow that shifts 

programming from constructing solutions to selecting and adapting model outputs 

[10]. 

Security concerns amplify these educational issues. Unlike compilers or static 

analyzers, LLMs generate code probabilistically and do not perform semantic 

verification or enforce secure design principles [11], [12]. As a result, they frequently 

produce solutions that are functionally correct at the surface level but inherently 

insecure in structure. Controlled studies have shown that LLMs can perform 

competitively on introductory programming assessments, scoring up to 78% on 

typical exams, but still embed serious vulnerabilities in the generated code[1], [13]. 

The reliance on these tools also fosters a "false sense of security" [14], leading novices 

to bypass critical security inspection. 

Recent security-focused analyses report that nearly 40% of LLM-generated 

programs contain at least one exploitable weakness [12]. Common patterns observed 

include Improper Input Validation (CWE-20), SQL Injection (CWE-89), Broken 

Access Control (CWE-285, CWE-639), Authentication Failures (CWE-287), and 

Hardcoded Credentials (CWE-798). These issues align with critical risks identified 

in the OWASP Top 10 and can compromise confidentiality, integrity, and system 

availability [15], [16]. The underlying cause stems from the nature of LLMs which 

they reproduce statistical patterns found in training data including insecure idioms 

without understanding security invariants [17], [18]. For instance, LLMs often 

generate raw SQL queries without sanitization or authentication logic, lacking 

proper authorization checks [19]. 

Existing literature tends to evaluate correctness, usability, or code quality in 

isolation, leaving a critical gap in understanding how LLM-generated code impacts 

novice developers in real academic environments. Few studies examine the 

intersection of learning behavior, code security, and AI-assisted development, 

particularly in undergraduate settings where students may treat AI suggestions as 

authoritative. 
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This study addresses these gaps by empirically analyzing vulnerabilities in 

real-world PHP/Laravel applications developed by students with LLM assistance. 

Through static code analysis using PHPStan and mapping to the OWASP Threat and 

Safeguard Matrix (TaSM) [23], the research aims to identify prevailing vulnerability 

patterns, understand how LLM usage influences security risks in educational 

contexts, and demonstrate the potential of static analysis as an early-stage 

pedagogical intervention.  

 
2. Methods 

This study employs an empirical research method that combines static code 

analysis and vulnerability profiling to evaluate security weaknesses in Laravel-

based PHP applications developed with the assistance of Large Language Models 

(LLMs). The projects developed by the students have the following configuration:  

1. XAMPP ver 8.1.25 (PHP 8.1.25, MariaDB 10.4.32) 

2. Windows 11 

3. Laravel 11.9 

The methodology is designed to enable reproducibility through clear 

documentation of dataset selection, analysis tools, categorization schemes, and 

validation steps, as seen in Figure 1. The research workflow consists of dataset 

acquisition, filtering and validation, static code analysis, vulnerability classification, 

and result interpretation. 

2.1 Research Stages 

This study adopts a descriptive-analytic design to examine the security posture 

of student-developed web applications and to investigate patterns of vulnerabilities 

linked to the implicit use of LLMs in programming tasks. The research design 

focuses on two primary objectives: (1) to assess the prevalence of security 

vulnerabilities in student code using static analysis, and (2) to classify and interpret 

vulnerability patterns based on OWASP risk categories. The study integrates 

quantitative measures (e.g., frequency of CWE categories) and qualitative inspection 

(manual verification of code) to strengthen analytical validity. 

2.2 Data Collection and Selection 

The data for this study consists of capstone-level web application projects 

developed by undergraduate students enrolled in a Web Development course. A 

total of 30 projects were initially collected from students’ public GitHub repositories. 

Each project implemented a specific system using the Laravel framework to fulfill 

instructional learning objectives. Only 28 projects were included in the analysis after 

applying the following selection criteria, as seen in Table 1. 
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Tabel 2. Project Criteria to be Used in The Research 

Inclusion Criteria Exclusion Criteria 

• The project must be a functional 

web application built using 

Laravel 11. 

 

• The codebase must be publicly 

accessible via GitHub. 

 

• The project must include 

application logic, routing, 

database access, and 

authentication modules. 

• Projects not using Laravel 11 (1 

eliminated). 

 

 

• Projects that failed to run due to 

missing dependencies or broken 

configuration (1 eliminated). 

 

Although the use of LLMs, such as ChatGPT or GitHub Copilot, was neither 

required nor explicitly documented by students, an initial survey and code pattern 

inspection were used to identify likely LLM usage. Indicators included repetitive 

coding patterns, generic error messages, boilerplate CRUD templates, and identical 

function naming patterns typical of AI-generated suggestions.  

 

 
Figure 1. Process of Developing Datasets 

 

2.3 Vulnerability Categories  

Vulnerability detection in this study was conducted using the Common 

Weakness Enumeration (CWE) taxonomy mapped to security risk categories from 

OWASP [20]. Only code-level weaknesses relevant to PHP and Laravel were 

analyzed. Vulnerabilities were grouped into five primary categories, as seen in 

Table 2. 

These categories were selected based on their prevalence in prior empirical 

studies on LLM-generated code and their alignment with the OWASP Top 10 (2021) 

web application security risks. 

2.4 Static Analysis Procedure 

Static analysis was conducted using PHPStan configured at Level 8, which 

enforces strict static type and structure validation. Although PHPStan is primarily 

designed for code consistency and reliability checks, rather than explicit security 

scanning, its rule engine has been extended with custom configurations to detect 
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patterns associated with security weaknesses. Thus, static analysis was applied to 

the 28 validated Laravel projects, specifically targeting the /app, /routes, and /config 

directories. These extensions targeted insecure Laravel usage patterns, such as: 

a) Direct use of raw database queries (DB::select, DB::statement) without query 

binding 

b) Missing input validation using $request->validate() 

c) Route definitions without authentication or authorization middleware 

d) Unsafe file handling (Storage::get or File::get without sanitization) 

 

Tabel 2. Vulnerability Categories According to CWE Reference 

Category Description CWE Reference 

Improper Input 

Validation 

Lack of sanitization/validation of user 

inputs 
CWE-20 

Broken Access Control 
Unprotected routes or unauthorized 

operations 
CWE-285, CWE-639 

SQL Injection Unsafe query execution via raw input CWE-89 

Authentication Failures 
Weak or missing authentication 

controls 
CWE-287 

Hardcoded Secrets 
API keys or credentials stored in 

source code 
CWE-798 

 

For each repository, PHPStan was executed recursively on the /app, /routes, 

and /config directories using a standardized configuration file to maintain 

consistency across all analyses. The tool generated structured reports containing 

detected issues, which were then exported in JSON format for post-processing and 

classification. 

2.5 Construction of Vulnerability Matrix 

To provide a structured interpretation of detected weaknesses, results were 

mapped into a Vulnerability Threat Matrix adapted from the OWASP Threat and 

Safeguard Matrix (TaSM). This matrix not only quantifies the security posture of the 

analyzed projects but also provides a pedagogical tool for students to understand 

how vulnerabilities evolve from coding errors to exploitable conditions. Each entry 

is classified by five dimensions: Threat Source, Weakness Type (CWE), Attack 

Vector, Impact, and Recommended Mitigation, as seen in Table 3. 

The final vulnerability matrix was validated through manual inspection by 

two reviewers with secure coding expertise to ensure consistency and eliminate false 

positives. 
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Tabel 3. Vulnerability Matrix based on TaSM 

Threat Source 
Weakness 

Type (CWE) 
Attack Vector 

Potential 

Impact 

Recommended 

Mitigation 

External user / 

API client 

CWE-20 Unsanitized user 

input via forms or 

API parameters 

Data 

corruption, 

injection, or 

XSS attacks 

Implement Laravel 

validation rules using 

Request::validate() and 

sanitize input data. 

Unauthorized 

user/endpoint 

CWE-285 Accessing 

unprotected 

routes or hidden 

endpoints 

Unauthorized 

data access, 

privilege 

escalation 

Use Laravel 

middleware (auth, can) 

and define route 

authorization in 

web.php. 

Malicious 

query/attacker 

CWE-89 Direct query 

execution using 

DB::select() with 

unsanitized 

variables 

Data theft, 

database 

corruption 

Use Laravel Eloquent 

ORM or parameterized 

queries to prevent SQL 

injection. 

Insider/developer 

oversight 

CWE-798 Credentials or 

API keys stored in 

source files 

Unauthorized 

system or API 

access 

Store secrets in .env 

file; never commit 

credentials to version 

control. 

Unauthenticated 

user 

CWE-287 Missing or weak 

authentication 

mechanism 

Unauthorized 

system entry, 

session 

hijacking 

Implement Laravel 

authentication 

scaffolding and hashed 

passwords using 

bcrypt. 
 

 
3.Results and Discussion 

3.1 Quantitative Analysis of Vulnerability Patterns 

Static analysis was performed on 28 validated Laravel 11 projects using 

PHPStan at level 8. The analysis identified a total of 173 vulnerability instances 

distributed across five primary CWE categories. Tabel 4 presents the detailed 

distribution of vulnerabilities per category. 

The data indicate that Improper Input Validation (CWE-20) and Broken Access 

Control (CWE-285) account for approximately 64.16% of all detected vulnerabilities. 

These weaknesses represent fundamental lapses in secure coding awareness rather 

than complex attack surfaces. 

Moreover, projects that relied more heavily on generated snippets showed a 

24.27% higher occurrence of CWE-89 and CWE-798 vulnerabilities, suggesting an 

increased dependency on insecure example patterns embedded in the generated 

code. 

3.2 Example of Vulnerability Code Snippet 

The research uncovered several concrete code snippets with identified 

vulnerabilities, as detailed below: 

a. SQL Injection: 

$query = "SELECT * FROM users WHERE email = '" . \$_POST['email'] ."'"; 
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$result = DB::select($query); 

b. Authentication Failures (Login without token validation or rate-limiting): 

if (\$request->input('password') == 'admin123') { 

a. Auth::loginUsingId(1); 

} 

c. Hardcoded Credentials (Store credentials explicitly): 

\$apiKey = "sk_test_51H..."; 

d. Improper Input Validation: 

\$book = new Book(); 

\$book->title = \$_POST['title']; 

\$book->save(); 

e. Broken Access Control: 

Route::get('/admin/deleteUser', [AdminController::class, 'delete'] 

 

Tabel 4. Vulnerability Frequency by CWE Category 

CWE Category Occurrences Percentage (%) Severity 

(High/Med/Low) 

CWE-20 Improper Input 

Validation 

64 36.99 High 

CWE-285 Broken Access 

Control 

47 27.17 High 

CWE-89 SQL Injection 23 13.29 High 

CWE-798 Hardcoded 

Credentials 

19 10.98 Medium 

CWE-287 Authentication 

Failures 

20 11.57 Medium 

Total 173 100 — 

 

3.3 Root Cause of Security Weaknesses 

The vulnerabilities identified in LLM-assisted code are not isolated occurrences 

but the result of deeper behavioral, cognitive, and contextual shortcomings in how 

novice developers interact with AI-based code generation tools. The root causes 

discussed below were not derived from primary data (e.g., interviews or surveys), 

but were systematically inferred through a qualitative, manual review of the 173 

vulnerable code segments identified by PHPStan's static analysis, cross-referenced 

with established educational and security literature. 
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a. Over-Trust in Generated Code (False Sense of Correctness) 

One of the most pervasive causes of security weaknesses is the over-trust 

novice developers place in the syntactic and functional correctness of 

generated code. Students often assume that since the code compiles and runs 

without errors, it must also be secure and efficient. This false sense of security 

discourages deeper inspection and rigorous security testing, aligning directly 

with the findings of Perry et al. [14], which documents that the use of AI 

assistants increases the likelihood of insecure code introduction among 

developers. In several analyzed projects, students directly deployed code 

suggested by the model without manual verification, resulting in exploitable 

flaws such as unsanitized SQL queries and missing authentication logic. 

For example, one project included the following vulnerable snippet: 

$results = DB::select("SELECT * FROM users WHERE email = '$request-

>email'"); 

The above code appears functional and produces correct query results, 

yet it allows for SQL injection due to unsanitized user input. The student relied 

entirely on model output, assuming correctness because the query executed 

successfully. 

b. Lack of Contextual Validation (Input Handling and Access Control) 

LLM-generated code typically lacks context awareness beyond the 

immediate prompt, resulting in incomplete implementations that omit critical 

validation or access control mechanisms. This limitation is particularly evident 

in frameworks like Laravel, where developers must explicitly define 

middleware or input validation layers. 

In multiple cases, generated controller methods failed to use built-in 

validation features such as Request::validate() or form request classes. 

Similarly, routes lacked middleware enforcement, allowing unrestricted access 

to administrative endpoints. These omissions stem from the model’s inability 

to infer application-level security policies and the student’s inexperience in 

compensating for such gaps. 

Route::get('/admin', [AdminController::class, 'index']);  

Without explicit authentication middleware, the above route exposes 

sensitive functionality to unauthorized users. Students often overlooked this 

omission because the page rendered correctly during testing, reinforcing their 

misplaced trust in the generated code. This behavior is indicative of cognitive 

offloading[21], where students prioritize functional completion over a deeper 

understanding of security invariants. 
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c. Copy-Paste and Prompt Reuse Behavior 

Another observed contributor is the copy-paste culture reinforced by 

prompt reuse behavior. Many students reused generated snippets from prior 

tasks or online sources without fully understanding their functionality. This 

led to inconsistencies in data validation and security policies across the same 

application. 

For instance, a student reused an earlier API controller template 

generated by the model, resulting in mismatched input sanitization between 

modules. Inconsistent application of security controls made the system more 

susceptible to injection and logic manipulation attacks. The convenience of 

LLM outputs inadvertently encouraged fragmented and redundant coding 

practices rather than deliberate, secure design [22]. 

 

3.4 Security Implications and Industry Practices 

Based on these research findings, it can be concluded that using LLM without 

a basic understanding of security poses a high risk. Therefore, for industrial contexts, 

the adoption of static code analysis tools must be an integral part of the DevSecOps 

workflow. This research can also provide a real contribution to the development of 

secure guidelines for the use of LLMs by novice developers. If these findings are 

integrated into industrial and academic practices, the productivity generated by 

LLM can be in line with the security of the resulting system. 

 
4. Conclusion 

This research demonstrates that the use of LLMs in application development 

by students, while accelerating the programming process, still has implications for 

the security aspects of the resulting software. Analysis of 28 LLM-based Laravel 

projects revealed a uniform pattern of error, dominated by fundamental weaknesses 

in Improper Input Validation (CWE-20) and Broken Access Control (CWE-285), 

which together constitute over 64% of all 173 detected instances. This uniformity 

indicates a critical over-reliance on LLM output without adequate human security 

review, fostering a false sense of security among students. 

The study’s primary contribution is twofold: it provides empirical evidence of 

specific security risks in LLM-assisted PHP/Laravel code and demonstrates the 

efficacy of a PHPStan-based static analysis pipeline, enhanced with custom rules, as 

a scalable method for early vulnerability detection. 

From a practical and pedagogical standpoint, these findings underscore the 

necessity of integrating security literacy directly into computer science curricula. 

Academic institutions must emphasize the systematic use of automated tools as a 

preventive measure and utilize frameworks like the OWASP Threat and Safeguard 
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Matrix (TaSM) to translate abstract security concepts into concrete mitigation 

actions. 

For future research, we recommend expanding the analysis by integrating 

multi-tool static analysis to cover more complex logical flaws and conducting an 

empirical experiment using a TaSM-based pedagogical intervention to measure its 

effectiveness in improving students' secure coding proficiency when they utilize 

LLMs. 
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