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Abstract 

This paper discusses the application of Convolutional Neural Network (CNN) and 

Transfer Learning (TL) methods to improve the accuracy of dragon fruit 

classification. The application of the CNN method in real-time testing for classifying 

three types of dragon fruit only achieved an accuracy rate of 33.3%. Therefore, the 

CNN and TL methods using the Stochastic Gradient Descent (O-SGD) optimizer and 

the Root Mean Square Propagation (O-RMSProp) optimizer are proposed to 

improve the accuracy rate in classifying three types of dragon fruit: ripe, unripe, and 

rotten. The results of applying the CNN method with O-SGD at epoch 100 yielded 

an accuracy of 27.18%, val accuracy of 27.27%, loss of 1.407, and val loss of 1.405, 

while O-RMSProp at epoch 100 yielded an accuracy of 99.11%, val accuracy of 100%, 

loss of 0.073, and val loss of 0.058. Meanwhile, the application of the TL method with 

O-SGD at epoch 100 yielded an accuracy of 89.35%, val accuracy of 91.82%, loss of 

0.462, and val loss of 0.443. TL with O-RMSProp at epoch 100 yielded an accuracy of 

100%, val accuracy of 100%, loss of 0.002, and val loss of 0.003. The performance of 

the TL method with O-SGD and O-RMSProp is more accurate in classifying three 

types of dragon fruit compared to the CNN O-SGD and O-RMSProp models. This 

research contributes to improving the accuracy level of the CNN classification 

method to ±99-100%, and the application of this technology is an effort to enhance 

production quality and support smart agriculture in Banyuwangi Regency. 
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1. Introduction 

The East Java Province's largest dragon fruit-producing region is Banyuwangi 

[1]. According to data obtained by the Banyuwangi Central Statistics Agency, 

harvests of dragon fruit exceeded 408,093 tons in 2021 and 272,324 tons in 2022 [2]. 

Up to 80% of East Java's dragon fruit production is generated by banyuwangi [3]. 

Due to the benefits of anthocyanins, dragon fruit is produced [4], 

hypercholesterolemia [5], anti-free radicals [6], anti-bacterial [7], bioactive 

substances (carbonic acid, beta-carotene) [8], betacyanin [9], ascorbic acid [10], oleic 

acid, organic acids, phenols and esters [11]. In addition, dragon fruit can lower blood 

pressure [12], increase hemoglobin [13], lower leukocytes [14], cure cancer [15], and 

has antimicrobial, antifungal, anti-inflammatory, anticancer, antilithic, anti-fertility, 

and antidiabetic properties [16]. 

Dragon fruit production is sold in local markets (5%), regencies (25%), 

provinces (40%), exports (30%), and the cities of Surabaya, Malang, Jakarta, 

Bandung, and Bali [17]. However, the price of dragon fruit sold in the market faces 

several problems. The first is the price during the October-April season, which is ±Rp 

5,000-8,000 per kilogram with a loss of ±Rp 2,000-5,000 per kilogram. The second is 

the use of artificial lighting outside the season from May to September from 10:00 

p.m. to 5:00 a.m., which requires electricity costs of 600,000 per night and 6,400,000 

per month. The third is the quality of fresh fruit production during and outside the 

season, which only reaches 50% due to diseases and pests affecting dragon fruit. The 

selling price during the season reaches 10,000/kg [18], and outside the season it is 

35,000/kg [19]. 

The selling price of dragon fruit is influenced by color, where ripe dragon fruit 

shows signs such as dark red color, shiny skin, shrinking crown or cap, large round 

volume, and wrinkles at the base of the fruit. Based on the ripeness category, dragon 

fruit farmers make mistakes in determining ripe and unripe dragon fruit. This is 

influenced by several factors such as fatigue and varying levels of concentration 

among individuals [20]. 

Several efforts have been made to determine and increase dragon fruit 

production using artificial intelligence [21]. The use of electricity from 2020 to 2024 

resulted in a production of 19,069-98,436 tons per year [22]. Although production 

increased, farmers' electricity costs reached 4,600,000 per month [23]. The 

comparison of dragon fruit production with electricity is 28,905 kg/ha and without 

electricity is 15,736 kg/ha (28). Adding 12-18 watts of lamp power affects the harvest 

yield by 8. 22 Mg/g [24], variations in yellow LED lights produce 7.56 flowers [25], 

dragon fruit lighting increases production during the season [26], CNN classification 

of dragon fruit has 70% training data and 30% testing data [27], [28], IoT and CNN 
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monitoring applied to dragon fruit with accuracies of 0.976, 0.981, 0.986 [29], 

development of a sorting robot using CNN, and classification of ripeness based on 

color features using the SVM algorithm [30]. 

From the approach taken to enhance dragon fruit production, it appears that 

the Convolutional Neural Network-Transfer Learning (CNN-TL) classification 

system with Stochastic Gradient Descent (O-SGD) and Root Mean Square 

Propagation (O-RMSProp) optimizers for selecting three types of dragon fruit has 

not been implemented. The CNN-TL classification system with two optimization 

techniques is used to accelerate accuracy based on the classification results of 3 types 

of fruit at ±99-100% and maintain the quality of the harvest. The types of fruit are 

divided into the categories of rotten, ripe, and unripe. The application of this 

technology is an effort to improve production quality and support smart agriculture 

in Banyuwangi Regency. 

 
2. Methods 

2.1 Dataset  

Four hundred and fifty dragon fruit datasets were gathered in the initial phase 

of the experimental technique study processes.  In the second process, the datasets 

were separated into three groups: 150 ripe, 150 unripe, and 150 rotten.  The CNN-TL 

algorithm coding on Kaggle is used in the third step. Testing the CNN-TL training 

data using 450 datasets apiece is the fourth process.  Optimizing the CNN-TL 

training data outputs to increase accuracy and convergence with O-SGD and O-

RMSProp is the fifth step.  The training data must be saved in.h5 file type for the 

sixth procedure.  In the final phase, the CNN-TL algorithm was used to test the data 

in.h5 files in real time.  The CNN-TL classification results were tested in real time 

with a camera in the eighth stage, and the results for raw, ripe, and rotten dragon 

fruit were viewed in real time in the ninth phase. 

 
Figure 1. Research Method 
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The system process begins with the collection of sample data from the Esp 

camera capture, which yields variables in three class groups.  Next, the acquired data 

is fed into the process by saving the picture dataset to the directory/datasets/input 

and separating it into train and test sets.  The convolution process, which is a matrix 

multiplication process, is used to acquire values for each kernel, also known as a 

filter, and then calculates the coordinate values for training and validation purposes.  

The training dataset findings are then utilized to build a model.  The dragon fruit 

sorting classification system employs a validation or object matching method that 

has been modified to the previously stored model. 

 

2.2 Convolution Feature 

The convolution feature is a method for transforming an image into a new 

image result in the form of mathematical data.  Convolution is the sum of the 

multiplication of comparable or equivalent image elements (with similar 

coordinates) in two matrices or vectors.  Convolution is the result of multiplying 

each kernel and point of the input function.  A kernel is often a tiny matrix whose 

members are numbers.  The kernel works by shifting the function x(i).  The 

convolution result is calculated by adding each point in the function and expressing 

it as y(i) [31]. 

 
Figure 2. Convolution Feature 

 

2.3 Confusion Matrix 

The confusion matrix is a function that is used to assess the performance of 

classification models in machine learning. The confusion matrix is also used to 

calculate other matrices, including the accuracy function, recall function, and 
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F1_score function.  The function elements of this matrix result are known as the 

confusion matrix [32]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100% (1) 

where: 

TP : True Positive 

TN : True Negative 

FP : False Positive 

FN : False Negative 

 

2.4 Loss Function 

The loss function, also known as cross-entropy loss, is a function that is 

commonly used to determine how well a model will perform.  It can then be 

estimated using the error from the previously created model [33]. 

𝐻(𝑥, 𝑦) = −∑ 𝑦𝑖 log𝑥𝑖𝑛
𝑖=1  (2) 

where: 

H (x, y)  : Actual loss probability and prediction values 

∑_(i=0)^n : Epoch 

yi  : Original probability or original possibility 

xi  : Prediction probability or prediction likelihood 

Log  : The log is equal to zero 

 

2.5 Data Testing 

Testing the training by automatically monitoring the model's accuracy and loss 

numbers using Kaggle code.  Real-time testing involves testing with dragon fruit 

samples, then using a camera to watch the classification class shown on the monitor.  

The test results are then documented and evaluated.  Real-time testing correctly 

classifies each type of dragon fruit as ripe, unripe, or rotten.  The data used contains 

three types of dragon fruit classes, and the visual data was collected using an esp32 

camera.  There are 450 data points, comprising 150 rotting photographs, 150 unripe 

images, and 150 ripe images.  During the training process, the data will be split into 

80% training and 20% validation test data. 

 
3.Results and Discussion 

The classification results with the number of layers used in the CNN-TL 

method are 13, with details of Conv2D being 1 layer (conv2d_570), MaxPooling2d is 

2 layers (max_pooling2d_35 and max_pooling2d_36), dropout is 2 layers 

(dropout_17 and dropout_18), BatchNormalization is 2 layers 

(batch_normalization_575 and batch_normalization_576), flatten is 1 layer 
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(flatten_6), and Dense (fully connected) is 5 layers (dense_32, dense_33, dense_34, 

dense_35, and dense_36). 

3.1 CNN Optimizer SGD and RMS Prop 

Tabel 1 shows the results of the best training test obtained from the CNN 

method with SGD Optimizer. With parameter values accuracy, val_accuracy, loss, 

val_loss. 

 

Tabel 1. CNN Results with SGD Optimizer 

Epoch Accuracy (%) Val Accuracy (%) Loss Val Loss 

5 27,24 27,27 1.424 1.423 

10 27,28 27,27 1.708 1.709 

20 27,24 27,27 2.171 2.174 

50 27,29 27,27 1.720 1.720 

100 27,18 27,27 1.407 1.405 

 

Tabel 2 shows the results of the best training test obtained from the CNN 

method with the RMSprop Optimizer. With parameter values accuracy, 

val_accuracy, loss, val_loss. 

 

Tabel 2. CNN Results with Rmsprop Optimizer 

Epoch Accuracy (%) Val Accuracy (%) Loss Val Loss 

5 47,62 47,27 1,314 1,323 

10 74,50 77,27 1,005 1,021 

20 79,42 80 0,710 0,690 

50 98,66 100 0,282 0,307 

100 99,11 100 0,073 0,058 

 

3.2 TL Optimizer SGD dan RMS Prop 

Tabel 3 shows the results of the best training test obtained from the Transfer 

Learning method with SGD Optimizer. With the parameter values of accuracy, 

val_accuracy, loss, val_loss, the accuracy value obtained using the SGD optimizer is 

low. 

 

Tabel 3. TL Results with SGD Optimizer 

Epoch Accuracy (%) Val Accuracy (%) Loss Val Loss 

5 28,58 30,91 1,633 1,528 

10 32,89 43,63 1,503 1,371 

20 70,58 83,63 0,854 0,776 

50 58,47 80,90 0,994 0,895 

100 89,35 91,82 0,462 0,443 

 



Adi Mulyadi, Fuad Ardiyansyah, Muhammad Zainal Roisul Amin, Budi Liswanto, Widhi Winata Sakti 

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 233 

 

 

Tabel 4 shows the results of the best training test obtained from the Transfer 

Learning method with the RMSprop Optimizer. With the parameter values 

accuracy, val_accuracy, loss, val_loss, the accuracy of the RMSprop optimizer for all 

epochs is 100%. 

 

Tabel 4. TL Results with Optimizer RMSProp 

Epoch Accuracy (%) Val Accuracy (%) Loss Val Loss 

5 100 100 1,607 2,304 

10 100 100 1,106 6,986 

20 100 100 4,907 5,502 

50 100 100 1,206 0,001 

100 100 100 0,002 0,003 

 

Figure 3A shows a graph of epoch 100 testing against accuracy as an example 

of the results of testing the CNN method with the SGD optimizer. With train and 

validation parameters. The accuracy and validation values obtained were in the 

range of 82% with very fluctuating graph results. Epoch 100 testing against loss as 

an example of the results of testing the CNN method with the SGD optimizer. With 

train and validation parameters, the loss value decreased but at an initial value of 1, 

or 147%, and ended up falling to a value of 1.43, or 143%. The confusion matrix as a 

test of the validity of the model produced from the training process of the CNN 

method with the SGD optimizer to all readable classes or predicted that all classes 

were rotten with a total of 30 data for each class. 

 

 
Figure 3. (a) CNN Optimizer SGD and (b) CNN Optimizer RMSProp 
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Figure 3B shows a graph of epoch 100 testing against accuracy as an example 

of the results of testing the CNN method with the RMSprop optimizer. With train 

and validation parameters. At epoch 10, the accuracy increased to 0.7 or 70% and 

rose again at epoch 18 with an accuracy increase of 0.92 or 92%. Testing epoch 100 

against loss as an example of the test results of the CNN method with the RMSprop 

optimizer. With train and validation parameters. The loss decreases from a value of 

1.50 or 150% and slows down gradually to a low point of 0.2 or 20%. Confusion 

matrix as a test of the accuracy of the model produced from the training process of 

the CNN method with the RMSprop optimizer with the predicted class raw twice. 

 

 
Figure 4. (a) TL Optimizer SGD and (b) TL Optimizer RMSProp 

 

Figure 4A shows a graph of epoch 100 testing against accuracy as an example 

of the results of testing the Transfer Learning method with the SGD Optimizer. With 

the train and validation parameters, the accuracy increases slowly and fluctuates 

from epoch 1 to epoch 100. The graph of epoch 100 testing against loss as an example 

of the test results of the Transfer Learning method with SGD Optimizer. With the 

train and validation parameters, the loss value decreases from 1.6 or 160% to 0.8 or 

80%. The confusion matrix as a test of the accuracy of the model produced from the 

Transfer Learning method training process with the SGD Optimizer shows that all 

predictions for the rotten class are correct, but for the raw class, only 25 predictions 

are correct and 5 are incorrect. Similarly, for the ripe class, only 24 predictions are 

correct and 6 are incorrect. 

Figure 4B shows a graph of epoch 100 testing against accuracy as an example 

of the results of Transfer Learning method testing with the RMSprop Optimizer. 
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With train and validation parameters, the accuracy results for epoch 1 immediately 

increased to 0.98 or 98% and remained stable until epoch 100. The graph of epoch 

100 testing against loss as an example of the test results of the Transfer Learning 

method with the RMSprop Optimizer. With train and validation parameters, the loss 

decreased to 0.05 or 5%, and the validation loss increased from 0.05 in epoch 18 to a 

loss of 0.2 or 20%. Confusion matrix as a test of the accuracy of the model produced 

from the Transfer Learning method training process with the RMSprop Optimizer, 

to all correct class predictions. 

 
4. Conclusion 

The Transfer Learning (TL) technique with O-SGD and O-RMSProp 

significantly outperforms the CNN O-SGD and O-RMSProp models for classifying 

three types of dragon fruit: ripe, unripe, and rotten. At epoch 100, the CNN method 

with O-SGD achieved an accuracy of 27.18%, val_accuracy of 27.27%, loss of 1.407, 

and val loss of 1.405. In comparison, O-RMSProp with CNN at epoch 100 achieved 

much higher performance, with an accuracy of 99.11%, val_accuracy of 100%, a loss 

of 0.073, and val_loss of 0.058. 

On the other hand, the TL method using O-SGD at epoch 100 yielded an 

accuracy of 89.35%, val_accuracy of 91.82%, loss of 0.462, and val_loss of 0.443. 

However, the TL method using O-RMSProp at epoch 100 produced 100% accuracy, 

100% val_accuracy, 0.002 loss, and 0.003 val_loss, demonstrating the best results 

overall. The CNN-TL technique with O-RMSProp achieved the most accurate and 

consistent classification results. 

This research highlights the effectiveness of Transfer Learning combined with 

O-RMSProp optimization in enhancing classification accuracy for dragon fruit, 

making it a valuable tool for smart agriculture. The application of this technology 

can improve the sorting of dragon fruit based on ripeness, helping farmers achieve 

better pricing and reduce waste. 

For broader adoption, challenges such as infrastructure, cost, and farmer 

training must be addressed. Future research should focus on optimizing the system 

for scalability, ensuring its affordability, and exploring its application across 

different agricultural sectors. This technology holds great potential in 

revolutionizing agricultural practices and supporting the growth of smart 

agriculture in Banyuwangi and beyond. 
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