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Abstract 

Alzheimer’s disease is a common form of progressive dementia, especially among 

the elderly, and is characterized by a decline in cognitive function. Classifying this 

disease using 3D brain imaging through MRI is challenging due to the complexity 

of the data and the similarity of features across classes. This study develops a 

classification model based on a 3D Convolutional Neural Network (3D CNN) 

architecture, specifically using ResNet-18. The dataset used is obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), consisting of 1,281 samples 

evenly distributed across three classes: Cognitively Normal (CN), Mild Cognitive 

Impairment (MCI), and Alzheimer’s Disease (AD). The data undergo several 

preprocessing steps, including skull stripping, normalization, and augmentation. 

The model is tested in two configurations: without dropout and with a dropout rate 

of 0.3. The results show that the model with dropout performs better, achieving a 

classification accuracy of 62.0% and a macro F1-score of 0.604. The model 

outperforms ADNet and Vision Transformer, and approaches the accuracy of Vision 

Mamba. Nevertheless, this approach still requires further development, particularly 

in improving accuracy for the CN class and reducing performance imbalance across 

classes. 
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1. Introduction 

Dementia is a chronic neurodegenerative disorder that progresses gradually 

and has a significant impact, causing a decline in cognitive abilities [1]. According to 

statistical data from the World Health Organization (WHO), the prevalence of 
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dementia is increasing globally. In 2016, dementia was the fifth leading cause of 

death worldwide [2]. Alzheimer's disease is the most common type of dementia 

found among people worldwide, particularly in the elderly population [3]. Patients 

experience cognitive decline caused by nerve damage in the brain, which begins in 

the hippocampus—the area responsible for memory formation. As the disease 

progresses, the damage spreads to other brain regions, resulting in substantial brain 

tissue shrinkage [4]. Additionally, the effects include short-term memory loss, 

difficulty communicating, impaired problem-solving skills, and reduced ability to 

care for oneself, all of which can interfere with daily activities. This disorder typically 

occurs in individuals over the age of 65 [5]. 

According to the World Alzheimer Report 2018 by Alzheimer’s Disease 

International, a new case of dementia is estimated to occur every 3 seconds 

worldwide. As a result, in 2018, there were 50 million people globally living with 

Alzheimer’s and other types of dementia, and this number is projected to triple to 

152 million by 2050 [6]. 

In Indonesia, the Ministry of Health estimated that there were approximately 

1 million individuals with Alzheimer’s in 2013, a number expected to double by 2030 

and quadruple by 2050 [7]. Age is the primary contributing factor, with prevalence 

increasing significantly in individuals over 65. Other contributing factors include 

education level, cardiovascular disease, mild cognitive impairment, traumatic brain 

injury, and limited social interaction [8]. Alzheimer’s symptoms develop gradually 

and are difficult to diagnose; therefore, rapid and accurate detection is crucial for 

appropriate treatment [9]. Currently, Alzheimer’s diagnosis is commonly performed 

using clinical tests and brain imaging analysis with Magnetic Resonance Imaging 

(MRI). Although effective, manual examination is time-consuming and requires 

medical expertise. It is also prone to inter-observer variability, particularly in 

assessing the severity of early-stage Alzheimer’s. 

With advancements in machine learning, automated image-based approaches 

such as the 3D Convolutional Neural Network (3D CNN) have become relevant. 

CNNs are known for their ability to process and analyze complex, high-dimensional 

data, commonly applied to 2D image inputs [10], [11]. However, for three-

dimensional MRI data, a 3D CNN approach is more suitable, as it can capture 

complete spatial information. 

This study aims to explore the use of a 3D Convolutional Neural Network (3D 

CNN) model to classify Alzheimer’s disease based on 3D MRI images. The study 

compares the performance of the model in differentiating between three diagnostic 

classes: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and 

Cognitively Normal (CN). It also evaluates the impact of data quantity, 

augmentation techniques, and regularization methods such as dropout on the 
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model's performance. The goal is to contribute to the development of a more 

accurate and efficient classification and detection system for Alzheimer’s disease. 

 
2. Methods 

2.1 Preparation and Preprocessing 

This study uses three-dimensional brain imaging data (3D MRI) obtained from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database through the 

Image and Data Archive (IDA) system. The dataset consists of three diagnostic 

categories: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and 

Cognitively Normal (CN). The MRI samples shown in Figure 1 are anatomical scans 

acquired using the T1-weighted method, with an original resolution of 256 × 256 × 

170 voxels. 

This study includes two experiments that use the same dataset configuration, 

comprising a total of 1,281 samples evenly distributed across the three categories, 

with 427 MRI images for each class: AD, MCI, and CN. Before being used to train 

the 3D CNN model, all MRI data undergo preprocessing steps to standardize image 

quality and resolution, ensuring consistency across the dataset. 

 

 
Figure 1. a 3D brain MRI scan acquired from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) using T1-weighted imaging. 

 

In the preprocessing stage, several methods are used to prepare the MRI 

images before being input into the model. The initial and crucial step is skull 

stripping. Skull stripping aims to remove non-brain components such as the skull 

and outer soft tissues, which are not needed for the classification process. This 

process is performed using FSL-BET (Brain Extraction Tool), which is part of the 

FMRIB Software Library (FSL) package. 

As shown in Figure 2(a), the original MRI image is processed using FSL-BET 

with the threshold value set to 0.5. This threshold functions as a boundary to 
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separate brain tissue from non-brain tissue. Additionally, the robust brain center 

estimation mode is enabled to improve the tool’s adaptability to asymmetrical or 

tilted head positions. Furthermore, the parameter mask=True is applied to generate 

a binary mask, which is useful for visualization or further segmentation of the 

extracted brain area. The result of the skull stripping process is shown in Figure 2(b). 

 

 
Figure 2. (a) Original brain MRI image before skull stripping using FSL-BET; (b) 

Brain MRI image after skull stripping processed with FSL-BET 

 

After the skull-stripping process, the preprocessing stage continues with 

intensity normalization of the voxels into the range [0, 1]. This step aims to ensure a 

uniform scale of intensity values across all volumes in the dataset. Subsequently, the 

MRI images are resized to a dimension of 160×160×160 voxels. This adjustment is 

performed to standardize the input dimensions across samples while also reducing 

the computational load during the training process. Additionally, the channel 

dimension is adjusted by adding a single channel, resulting in a final format for each 

volume of (160, 160, 160, 1). The results of the preprocessing can be seen in Figure 3. 

 

 
Figure 3. Example of a brain MRI image after preprocessing steps 
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The dataset is subsequently split into three subsets: 70% for training, 15% for 

validation, and 15% for testing. The distribution of samples across each diagnostic 

class—Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and 

Cognitively Normal (CN)—is shown in Tabel 1. 

 

Tabel 1. Data Allocation for Training, Validation, and Testing in This Study 

Amount of data from Experiments 1 and 2 

Class 
Number Of 

Subjects 
Training Validation Testing 

AD 427 299 64 64 

MCI 427 299 64 64 

CN 427 299 64 64 

Total 1281 897 192 192 

 

In addition to data splitting, an augmentation process is also applied, 

specifically to the training subset. The purpose of augmentation is to increase the 

spatial variability of brain images used by the model, allowing it to learn from a 

wider range of possible shapes and structures. The augmentation method used in 

this study is random rotation applied to the 3D MRI images. The rotation is 

performed on the transverse plane (XY plane), with rotation angles randomly 

selected from the following set of values: {−20°, −10°, −5°, 5°, 10°, 20°}. 

2.2 Model Architecture 

This study employs the 3D CNN ResNet-18 architecture, which is a three-

dimensional variant of the Residual Network (ResNet-18). This model is well-suited 

for processing volumetric data such as MRI because it preserves spatial information 

across all three dimensions of brain images, while also offering advantages in 

training stability. ResNet utilizes residual connections that allow gradients to flow 

directly to the deeper layers, thereby minimizing the risk of vanishing gradients and 

accelerating convergence during deep network training [13]. 

This study includes two separate experiments using different model 

configurations, specifically in the application of dropout regularization, namely: 

1. The first experiment uses the standard 3D ResNet-18 architecture without the 

addition of dropout. The architecture used in this experiment is shown in 

Figure 4. This configuration serves as the baseline to observe the model’s 

performance without explicit regularization. 
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Figure 4. Example of a brain MRI image after preprocessing steps 

 

2. The second experiment uses a 3D ResNet-18 architecture, as shown in Figure 

5, which is modified by adding dropout layers. A dropout rate of 0.3 is 

applied after the GlobalAveragePooling3D layer and before the dense layer. 

Additionally, dropout is also inserted between the first and second dense 

layers. This modification is intended to reduce overfitting and improve model 

accuracy through stronger regularization, particularly considering the large 

number of parameters and the complexity of 3D MRI data. 

 
Figure 5. Architecture of the 3D CNN ResNet-18 Model with Dropout 

 

Tabel 2. Training Hyperparameter Settings 

Parameter Mark 

Optimizer Adam 

Learning Rate 1e-5 (with a minimum of 1e-8) 

Loss Function Categorical Crossentropy 

Batch Size 1 

Epoch Maksimum 100 

Input Shape (160, 160, 160, 1) 

Number of output classes 3 (MCI, CN, AD) 

 

2.3 Training Configuration 

After designing the model architecture, the next step is to carry out the training 

process. The training is conducted using the preprocessed 3D MRI data. The model 

is trained using the TensorFlow and Keras frameworks, with hyperparameter 

configurations designed to support optimization stability and prevent overfitting. 

Both experiments in this study use the same training configuration. The detailed 
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training settings, including the initial learning rate, optimizer used, and maximum 

number of epochs, are presented in Tabel 2. 

2.4 Model Validation and Evaluation 

The model validation and evaluation process aims to measure how well the 

trained model can generalize to unseen data. Evaluation is performed on the test 

data subset after the training process is completed. All experiments in this study use 

the same evaluation approach, both in terms of the test data and the performance 

metrics applied. The model’s performance is assessed using standard classification 

metrics, including accuracy, precision, recall, F1-score, and the confusion matrix. 

2.5 Software and Hardware 

The programming language used in this study is Python, due to its flexibility, 

open-source nature, and broad support for libraries relevant to data processing and 

deep learning implementation. Several libraries used in this research include  os, 

time, itertools, numpy, pandas, matplotlib, scikit-learn, and TensorFlow. 

TensorFlow is integrated with Keras as the API for building and training the deep 

learning model. TensorFlow also provides GPU support and tools for monitoring 

the training process. 

All experiments in this study were conducted on the researcher's personal 

computer with the following hardware specifications: Intel Core i7-12700F 

processor, 16 GB RAM, and an NVIDIA RTX 3060 GPU with 16 GB of memory, 

supporting CUDA acceleration. This hardware configuration enables stable and 

efficient training of the 3D CNN model on volumetric MRI data, although the 

training process is relatively time-consuming due to the complexity of the data. 

 
3.Results and Discussion 

3.1 Experimental Results 

This section presents the results of two experiments on Alzheimer’s disease 

classification using the 3D CNN ResNet-18 model on 3D MRI images. The first 

experiment uses the baseline architecture without dropout, while the second 

experiment incorporates a dropout rate of 0.3 as a regularization technique. 

3.1.1 First Experiment Results 

The first experiment uses the baseline 3D ResNet-18 architecture without the 

addition of dropout, but is conducted on a balanced dataset consisting of 1,281 

samples, with 427 samples for each class (CN, MCI, AD). The objective of this 

experiment is to evaluate the impact of increased data quantity and class balance on 

classification performance. 
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Figure 6. Training and Validation Accuracy Curve for the First Experiment 

 

Accuracy and Loss 

The results shown in Figure 6 indicate that the training accuracy increased 

steadily, approaching 80%, with the highest validation accuracy reaching 79%. 

Although there were some fluctuations, the validation accuracy remained relatively 

stable and did not experience a significant drop at the end of training. Meanwhile, 

as shown in Figure 7, the training loss consistently decreased, while the lowest 

validation loss was recorded at 0.86, indicating improved stability in the validation 

process compared to earlier trials. These findings suggest that increasing the 

quantity of data has a positive impact in reducing overfitting. 

 

 
Figure 7. Training and Validation Loss Curve for the First Experiment 

 

Confusion Matrix for the First Experiment 

Based on Tabel 3, the model achieved an overall accuracy of 55.2%, with a 

macro F1-score of 0.550. The best performance was obtained in the MCI class (label 

1), with a recall value of 0.641, while the CN class (label 0) showed the lowest 

performance, with a recall of 0.469. These results indicate that the model is more 

sensitive in recognizing the MCI class but still struggles to distinguish CN images 

from the other classes. 
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Tabel 3. Classification Performance Metrics for the First Experiment 

Class Precision Recall F1-Score Support 

CN (0) 0.508 0.469 0.488 64 

MCI (1) 0.569 0.641 0.603 64 

AD (2) 0.574 0.574 0.56 64 

Macro Avg 0.551 0.552 0.55 192 

Weighted Avg 0.551 0.552 0.55 192 

Accuracy   0.552 192 

 

Confusion Matrix Analysis 

During the field trial, several issues commonly faced by local farmers were 

confirmed, including water turbidity, fluctuating pH, and low oxygen levels caused 

by temperature changes. These findings validate the system’s practical relevance for 

real-world aquaculture operations. 

 

 

Figure 8. Confusion Matrix for the First Experiment 

 

Based on the results in Figure 8, the model correctly identified 41 out of 64 MCI 

samples, indicating improved performance in this class. Meanwhile, 35 Alzheimer’s 

Disease (AD) samples and 30 Cognitively Normal (CN) samples were correctly 

classified. However, misclassifications still frequently occurred between the CN and 

MCI classes. 

 

 

Figure 9. Training and Validation Accuracy Curve for the Second Experiment 
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3.1.2 Second Experiment Results 

The second experiment uses the baseline 3D ResNet-18 architecture with the 

addition of dropout, conducted on a balanced dataset consisting of 1,281 samples, 

with 427 samples for each class (CN, MCI, and AD). The purpose of this experiment 

is to evaluate the impact of increased data quantity and class balance on classification 

performance 

 

Figure 10. Training and Validation Loss Curve for the Second Experiment 

 

Training and Validation Accuracy and Loss 

Figure 9 shows a well-structured training graph, with training accuracy 

steadily increasing to nearly 90%, and a peak validation accuracy reaching 79%, 

which is the highest achieved compared to the previous experiment. The training 

loss decreased significantly, while the validation loss demonstrated greater stability, 

with relatively smaller fluctuations than those observed in the previous experiment, 

as shown in Figure 10. 

 

Tabel 4. Classification Performance Metrics for the Second Experiment 

Class Precision Recall F1-Score Support 

CN (0) 0.508 0.469 0.488 64 

MCI (1) 0.569 0.641 0.603 64 

AD (2) 0.574 0.574 0.56 64 

Macro Avg 0.551 0.552 0.55 192 

Weighted Avg 0.551 0.552 0.55 192 

Accuracy   0.552 192 

 

Classification Performance Metrics 

Based on Tabel 4, the evaluation on the test data shows that the model achieved 

an overall accuracy of 62%, with a macro F1-score of 0.604. The best performance 

was achieved in the MCI class (label 1), with a recall of 0.797 and the highest F1-score 

among the three classes. In contrast, the CN class (label 0) had the lowest recall, at 

only 0.359, although its precision was relatively high. 
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Figure 11. Training and Validation Loss Curve for the Second Experiment 

 

Classification Performance Metrics 

Based on Figure 11, the model successfully classified 51 out of 64 MCI samples 

and 45 out of 64 AD samples correctly. Performance on the CN class remains a 

challenge, with only 23 samples correctly classified, while the rest were misclassified 

into the MCI and AD classes. This indicates that although dropout improves the 

model’s overall generalization ability, the identification of CN images still requires 

further attention, both in terms of model architecture and data representation. In 

general, this experiment demonstrates that the addition of dropout enhances 

validation stability and test accuracy, making it the best configuration among the 

two experiments conducted. 

3.2 Comparative Analysis of Experimental Results 

Based on Tabel 5, it can be concluded that the addition of dropout had a 

positive impact on the overall performance of the model. The total accuracy 

increased from 55.2% to 62.0%, and the macro F1-score also improved from 55.0% to 

60.4%, indicating that the model in Experiment 2 achieved better and more balanced 

generalization across all classes. Additionally, the model’s performance for each 

individual class also showed significant changes. 

 

Tabel 5 Performance Comparison of Experiment 1 and Experiment 2 

Aspect Experiment 1 Experiment 2 

Total Accuracy 55.20% 62.00% 

Macro F1-Score 55.00% 60.40% 

MCI (1) Recall 64.10% 79.70% 

CN (0) Recall 46.90% 35.90% 

AD (2) Recall 54.70% 70.30% 
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In the MCI class (class 1), the recall increased dramatically from 64.1% to 79.7%, 

indicating that the addition of dropout made the model more sensitive in 

recognizing MCI symptoms, which is the most challenging category in Alzheimer’s 

classification. An improvement was also observed in the AD class (class 2), where 

recall increased from 54.7% to 70.3%, demonstrating that the model became more 

capable of accurately detecting Alzheimer’s cases after applying regularization. 

However, the model’s performance in the CN class (class 0) experienced a 

decline in recall, dropping from 46.9% to 35.9%. This may be due to the model 

redistributing its attention more toward the MCI and AD classes, making the CN 

class features less dominant. Nevertheless, this trade-off is still acceptable 

considering the significant improvements in the other two classes, which are critical 

for early Alzheimer’s diagnosis. 

Overall, these results indicate that dropout plays an important role in 

improving model stability and generalization, especially for classes that were 

previously difficult to identify. The second experiment can therefore be considered 

the best-performing model configuration in this study. 

3.3 Comparative Analysis with Prior Research Findings 

A comparison with previous research is conducted to provide insight into the 

performance of the model developed in this study. The comparison is performed 

indirectly, based on the accuracy values reported in the literature using similar 

methods and the same dataset (ADNI). 

 

Tabel 6. Model Comparison 

Metode  Accuracy Dataset 

Vision Mamba 0.65 ADNI 

Visions Transformer 0.46 ADNI 

ADNet 0.52 ADNI 

3DCNN ResNet-18 (ours) 0.62 ADNI 

 

As shown in Tabel 6, the 3D CNN ResNet-18 model with the addition of 

dropout in this study outperformed the Vision Transformer model from the study 

“Classification of Alzheimer's Disease using Vision Transformers with MRI and 

FDG-PET” [14], as well as the ADNet model from the study “Alzheimer’s Disease 

Detection Through Whole-Brain 3D-CNN MRI” [11]. Furthermore, its performance 

approached that of the Vision Mamba model presented in the study “Vision Mamba: 

Cutting-Edge Classification of Alzheimer’s Disease with 3D MRI Scans” [12].  
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4. Conclusion 

This study developed an Alzheimer’s classification model based on 3D MRI 

images using the 3D ResNet-18 architecture, targeting three classes: Cognitively 

Normal (CN), Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). 

Two experiments were conducted with different configurations—one without 

dropout (Experiment 1) and one with a dropout rate of 0.3 (Experiment 2). 

Experiment 1 achieved a test accuracy of 55.2% and a macro F1-score of 0.550 but 

still showed signs of overfitting, particularly in the CN class. In contrast, Experiment 

2 demonstrated improved performance after applying dropout, achieving an 

accuracy of 62.0%, a macro F1-score of 0.604, and the highest recall in the MCI 

(79.7%) and AD (70.3%) classes. 

These results confirm that the addition of dropout improves the model’s 

generalization ability, especially in distinguishing classes with complex patterns 

such as MCI and AD. Although challenges remain in accurately identifying the CN 

class, the model configuration used in Experiment 2 can be considered the most 

optimal in this study. 
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