

Type of

Contribution:

Research Paper

Review Paper

Case Study

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 121

E-ISSN: 2962-2565

ENERGY: JURNAL ILMIAH

ILMU-ILMU TEKNIK

Vol. 15, No. 2 (2025) pp 121-134

DOI: 10.51747/energy.v15i2.15201

 Optimization of the Recurrent Neural Network

(RNN) Model for SQL Injection Intrusion

Detection In Databases
Turmuzi1*, Kusrini1
1 Master Informatics Engineering, Amikom Yogyakarta University, 55283, Indonesia

*turmuzi@students.amikom.ac.id

Abstract

This study focuses on optimizing the Recurrent Neural Network (RNN) model,

specifically through the integration of Long Short-Term Memory (LSTM) layers, to

improve the detection of SQL injection attacks in database systems. SQL injection is

a significant cybersecurity threat that can compromise sensitive data and

organizational integrity. Using a dataset from Kaggle, the research explores various

hyperparameter configurations, such as activation functions (Softmax, Tanh, ReLU,

PReLU, and LReLU), optimizers (Adam, SGD), learning rates (0.001, 0.0001), and

regularization techniques (Dropout and L2). The study reports a notable

performance improvement with the Tanh activation function, Adam optimizer, and

a learning rate of 0.001, achieving an accuracy of 98.17% and a loss of 0.4084 after 100

epochs. Compared to other models, such as those using standard RNNs or hybrid

BERT-LSTM models, the proposed RNN-LSTM model outperforms in detection

accuracy while maintaining lower computational requirements, making it more

suitable for real-time applications. This research contributes to the field of database

security by demonstrating the efficacy of optimized RNN-LSTM models for real-

time SQL injection detection and highlights the importance of hyperparameter

tuning for improved performance. The findings pave the way for future

advancements in intelligent threat detection systems.

Keywords: Optimization; LSTM; RNN; Intrusion Detection; SQL Injection

1. Introduction

In In today’s rapidly evolving digital landscape, the safeguarding of sensitive

data is paramount. SQL injection attacks, which exploit vulnerabilities in database-

driven applications, remain one of the most dangerous cybersecurity threats [1].

This article

contributes to:

Article Info

Submitted:

2025-07-02

Revised:

2025-08-04

Accepted:

2025-08-18

Published:

2025-8-22

This work is

licensed under a

Creative

Commons

Attribution-

NonCommercial

4.0 International

License

Publisher

Universitas

Panca Marga

mailto:turmuzi@students.amikom.ac.id
https://creativecommons.org/licenses/by-nc/4.0/
https://sdgs.un.org/goals

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 122

These attacks can manipulate SQL queries to bypass authentication, access sensitive

information, and damage organizational systems. As reported by the Open Web

Application Security Project (OWASP), SQL injection is consistently ranked as one

of the top vulnerabilities in web applications, emphasizing the critical need for

robust intrusion detection mechanisms. Despite significant advancements in

cybersecurity, SQL injection attacks continue to be a prevalent method for

cybercriminals to exploit web applications, posing a constant challenge to database

security.

Machine learning techniques have shown promise in improving intrusion

detection, and among these, Recurrent Neural Networks (RNNs), particularly Long

Short-Term Memory (LSTM) networks, have gained attention for their ability to

process sequential data and identify temporal patterns [2]. Previous studies have

demonstrated the success of RNN-based models in detecting SQL injection attacks

[3]. For example, AlAzzawi (2023) reported achieving high accuracy with a standard

RNN model in identifying SQL injection attempts [4]. While Liu and Dai (2024)

implemented a hybrid BERT-LSTM model for intrusion detection with notable

precision [5]. These efforts illustrate the growing potential of deep learning models

in cybersecurity but also highlight ongoing challenges [6], particularly in terms of

optimizing model performance and achieving real-time detection capabilities.

While prior research has contributed significantly to the field, gaps remain in

optimizing RNN-LSTM models for SQL injection detection. Existing studies often

focus on achieving high accuracy but overlook issues related to computational

efficiency, model overfitting, and the ability to adapt to evolving attack strategies.

Moreover, many models fail to address the imbalanced nature of SQL injection

datasets [7], where benign queries outnumber malicious ones, leading to inaccurate

evaluation results. This study aims to fill these gaps by focusing on the optimization

of RNN-LSTM models to improve both detection accuracy and computational

efficiency, with a particular emphasis on reducing false positives and enhancing

real-time detection capabilities.

The primary objective of this research is to develop an optimized RNN-LSTM

model that offers a balance between high accuracy and computational efficiency.

This study investigates various hyperparameter configurations, including activation

functions (Tanh, ReLU, LReLU), optimizers (Adam, SGD), learning rates, and

regularization methods, to enhance the model's performance [8]. By addressing the

challenges of class imbalance, overfitting, and model adaptability, this research

seeks to contribute to the development of more reliable and scalable intrusion

detection systems. Additionally, the study aims to provide insights into the novel

application of RNN-LSTM models in the context of SQL injection detection and lay

the groundwork for future advancements in intelligent threat detection models.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 123

2. Methods

2.1 Stages of Research

This study employs a quantitative experimental research design to evaluate

the performance of an optimized Recurrent Neural Network (RNN) model with

Long Short-Term Memory (LSTM) layers in detecting SQL injection attacks [9]. The

experiments aim to identify the most effective hyperparameter configurations, while

also addressing key challenges such as class imbalance and model overfitting.

2.2 System Design

The dataset used for this research was sourced from Kaggle and contains over

30,000 SQL queries [10]. labeled as either benign (0) or malicious (1). Specifically, the

dataset includes 11,382 malicious queries and 19,537 benign queries, resulting in a

36.8% to 63.2% distribution of malicious and benign queries, respectively. This class

imbalance presents a challenge for model training and evaluation, as models trained

on imbalanced datasets may exhibit bias toward the majority class (benign queries).

To address this issue, a series of preprocessing techniques were employed to balance

the dataset and improve model performance. These included:

• Resampling Methods: The dataset was balanced using oversampling

techniques such as the Synthetic Minority Over-sampling Technique

(SMOTE), which generated synthetic examples of the minority class

(malicious queries). This ensures that the model is exposed to a more balanced

distribution of classes during training, which helps mitigate bias.

• Evaluation Metrics: In addition to accuracy, which may be misleading in the

case of imbalanced data, additional evaluation metrics such as precision,

recall, and F1-score were used to assess model performance. These metrics

provide a more reliable measure of model effectiveness, particularly for

detecting malicious queries.

2.3 Data Preprocessing:

Several preprocessing steps were applied to the dataset before training the

model:

• Tokenization: SQL queries were tokenized into individual components to

enable the model to process the data as sequences.

• Numerical Encoding: The tokenized queries were numerically encoded using

one-hot encoding and word embeddings to represent the categorical tokens

as vectors.

• Sequence Padding: To ensure that all input sequences had the same length,

padding was applied to standardize the sequence lengths across the dataset.

This is necessary for the model to process the data efficiently.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 124

• Normalization: The numerical features were normalized to ensure consistent

scaling and to prevent any single feature from disproportionately influencing

the model's performance.

Figure 1. SQL Injection Dataset Labeling

Tabel 1. Data Sample of Dataset SQL Injection

Query Label

" or pg_sleep(__TIME__) -- 1

create user name identified by pass123 temporary tablespace temp 1

AND 1 = utl_inaddr.get_host_address(...) 1

select * from users where id = '1' or @@1=1 -- 1

select * from users where id = 1 or 1#" (...) 1

Preprocessing steps included tokenization of SQL queries, numerical encoding

using one-hot encoding or embeddings, and sequence padding to ensure uniform

input lengths. The dataset was also normalized, and label encoding was applied for

classification as shown in Tabel 1.

2.4 Stages of Research

The research process involves a series of steps necessary to carry out the

experiment. The following is a research flowchart and an explanation of each step:

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 125

Figure 2. Research Flow Chart

The research flow consists of several key stages, as outlined below:

1. Data Splitting: The dataset was divided into training and testing subsets,

with 80% of the data allocated for training and 20% for testing. This

division allows for the evaluation of model performance on unseen data,

providing an accurate assessment of generalization capability.

2. Model Training: The RNN model was trained using various

configurations of hyperparameters, including activation functions,

optimizers, learning rates, and the number of epochs. The following

hyperparameters were systematically tested:

• Activation Functions: Tanh, ReLU, LReLU, PReLU, and Softmax were

tested. Tanh was selected due to its ability to avoid saturation and

perform well with sequential data, which is crucial for SQL injection

detection.

• Optimizers: The Adam optimizer and Stochastic Gradient Descent

(SGD) were evaluated. Adam was chosen for its adaptive learning rate

capabilities, which can accelerate convergence, especially for complex

datasets like those involved in intrusion detection tasks.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 126

• Learning Rates: Two learning rates, 0.001 and 0.0001, were tested. A

learning rate of 0.001 was preferred based on prior studies [4][5]

indicating its effectiveness in balancing training speed and model

stability.

• Regularization: A combination of Dropout (set at 0.5) and L2

regularization was used to prevent overfitting, especially with the

imbalance in the dataset and the high risk of overfitting given the

complexity of the model.

• Epochs: The number of epochs was varied between 50, 70, and 100 to

assess the effect of longer training on model performance and to avoid

overfitting by monitoring performance on the validation set.

3. Model Evaluation: After training, the model's performance was evaluated

using the test set. As mentioned, multiple evaluation metrics (accuracy,

precision, recall, F1-score) were used to measure the model's performance

comprehensively. The accuracy score was complemented by the confusion

matrix, which provides insights into the true positives, false positives, true

negatives, and false negatives, offering a better understanding of the

model’s ability to detect malicious queries.

2.5 Hyperparameter Selection Justification:

The choice of hyperparameters was informed by the characteristics of the

dataset and prior research in the field of intrusion detection. The selection of the

LSTM architecture was based on its proven effectiveness in handling sequential data,

making it ideal for capturing the temporal dependencies inherent in SQL queries.

Additionally, Tanh was chosen as the activation function due to its non-saturating

nature, which allows for more stable gradients and better performance with the

dataset. The Adam optimizer was selected for its ability to adaptively adjust learning

rates, ensuring faster convergence and reducing the risk of overshooting the optimal

solution.

2.6 Class Imbalance Handling in Model Training:

To address the issue of class imbalance, in addition to oversampling, a

weighted loss function was used during model training. This approach assigns

higher penalties for misclassifying malicious queries, compensating for the

imbalance by making the model more sensitive to the minority class. This step

ensures that the model doesn't favor the majority class (benign queries) and

improves its ability to correctly classify malicious SQL injection attempts.

3.Results and Discussion

The experimental results confirm the efficacy of the optimized Recurrent

Neural Network (RNN) model with Long Short-Term Memory (LSTM) layers in

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 127

detecting SQL injection attacks. As presented in Table 2, the performance of the

model was evaluated across various hyperparameter configurations, including

activation functions, optimizers, learning rates, and the number of epochs. The key

findings highlight the superior performance of the Tanh activation function in

combination with the Adam optimizer, resulting in the highest accuracy (98.17%)

and the lowest loss (0.4084) after 100 epochs. This configuration outperformed other

activation functions and optimizers, providing a compelling justification for its use

in the final model.

3.1 Key Findings

a. Activation Function and Optimizer:

The comparison of different activation functions and optimizers demonstrates

that Tanh coupled with Adam optimizer consistently delivers the best results in

terms of both accuracy and loss reduction. Non-saturating activation functions,

like Tanh and ReLU, were particularly effective, as they avoided the gradient

saturation problem that can impede training, especially with deep neural

networks. The Adam optimizer was superior to SGD, likely due to its adaptive

learning rate, which allowed for faster convergence and better overall

performance. This combination of Tanh and Adam provides a stable, efficient, and

accurate model for SQL injection detection.

b. Impact of Learning Rate:

The learning rate played a critical role in determining the model's convergence

speed and overall performance. A learning rate of 0.001 yielded the best results,

while smaller learning rates such as 0.00001 resulted in slower convergence, which

ultimately impacted the model's ability to achieve high accuracy. Learning rates

that are too low can cause the model to get stuck in suboptimal local minima,

thereby reducing its ability to improve during training.

c. Effect of Epochs:

The number of epochs was also found to influence model performance. While

increasing the epochs from 50 to 100 resulted in improved accuracy, the

performance gain became marginal after reaching 100 epochs. This indicates that

the model began to converge after a certain number of epochs, and further training

did not significantly improve results. In contrast, 50 epochs may not provide

sufficient training for the model to reach its optimal accuracy, especially in the

case of complex datasets with high variance.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 128

Tabel 2. Accuracy Comparison based on Activation Function and Optimizer

Index Activation Optimizer Learning Rate Epochs Accuracy Loss

0 LReLU Adam 0.001 50 0.9655 0.3594

1 Tanh SGD 0.001 50 0.9578 3.0912

2 LReLU SGD 0.001 50 0.9529 3.1287

3 LReLU Adam 0.00001 50 0.9241 0.883

4 Tanh Adam 0.00001 50 0.9195 0.9188

5 PReLU Adam 0.00001 50 0.9190 0.9921

6 Tanh Adam 0.001 70 0.9565 0.5838

7 PReLU Adam 0.001 70 0.9541 0.4586

8 ReLU SGD 0.001 70 0.9537 3.4182

9 Tanh Adam 0.00001 70 0.9402 0.6298

10 PReLU Adam 0.00001 70 0.9353 0.6744

11 ReLU Adam 0.00001 70 0.9351 0.6220

12 Tanh Adam 0.001 100 0.9817 0.4084

13 Tanh SGD 0.001 100 0.9636 1.7652

14 LReLU SGD 0.001 100 0.9550 3.9411

15 Tanh Adam 0.0001 100 0.9476 0.5514

16 PReLU Adam 0.0001 100 0.9460 0.4692

17 LReLU Adam 0.0001 100 0.9457 0.4732

This study conducted a series of experiments to evaluate the performance of

the Recurrent Neural Network (RNN) model with LSTM layers in detecting SQL

injection attacks. The parameters tested included activation functions, optimizer

types, learning rate values, and the number of epochs. Regularization was

performed using a combination of the Dropout and L2 methods. The following is a

summary of the results of several parameter combinations that have been tested: For

systems where computational efficiency is critical as summarized in Tabel 2, using

LReLU with Adam optimizer and 50 epochs is sufficient to achieve high accuracy.

However, for environments prioritizing maximum detection capability, Tanh with

Adam optimizer and 100 epochs provides the highest accuracy, albeit with increased

training time and other functions were tested but not all of them were used in the

final model.

3.2 Discussion of Overfitting and Model Limitations

Despite the promising results, the study also identified the risk of overfitting

in certain configurations. Overfitting occurs when a model learns to perform well on

the training data but fails to generalize effectively to unseen data. This issue was

particularly evident in configurations with a high number of epochs and certain

optimizer settings. Although Dropout and L2 regularization were applied to

mitigate overfitting, there remains a potential concern, particularly with small or

imbalanced datasets. Regularization techniques like SMOTE for balancing the

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 129

dataset and early stopping could further help to address overfitting and improve the

model's generalizability.

Furthermore, zero-day attacks and highly obfuscated SQL injections remain

challenges that are not fully addressed by this model. While the optimized RNN-

LSTM model demonstrated high accuracy in detecting known SQL injection

patterns, new attack variants that have not been seen during training could still

evade detection. In future work, the integration of autoencoders for anomaly

detection or the use of unsupervised learning methods could help the model adapt

to previously unseen attacks. Additionally, adversarial training could improve the

model's robustness against more sophisticated or obfuscated SQL injection

techniques.

Figure 3. Accuracy Comparison based on Activation Function and Optimizer

Figure 3 shows that Tanh with Adam achieves the highest accuracy, indicating

the advantage of adaptive optimizers and non-saturating activation functions. From

the experimental results, it can be seen that the Tanh, ReLU, and PreLU activation

functions produce higher accuracy compared to other activation functions. This

shows that non-linear activation that avoids saturation, such as sigmoid/tanh,

provides better performance. Adam shows more stable and consistent performance

with higher accuracy than SGD in most scenarios. This is due to Adam's ability to

adaptively adjust the learning rate during the training process.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 130

Figure 4. Accuracy Comparison with Learning Rate

3.2.1 Real-World Applicability

The model's performance in a controlled experimental environment is

promising, but its real-world applicability in dynamic, large-scale systems needs

further exploration. Real-world environments introduce variability, such as new

attack vectors, evolving database systems, and shifting patterns in user queries. To

improve its deployment in practical settings, future adaptations of this model should

focus on scalability, real-time processing capabilities, and the ability to integrate

with existing web application firewalls (WAFs) or other security tools. The ability to

detect zero-day attacks and adapt to changing attack patterns is crucial for long-term

effectiveness in production systems.

As shown in Figure 4 learning rate of 0.001 has been proven to produce higher

accuracy compared to very small learning rates such as 0.00001. Learning rates that

are too small tend to cause models to converge slowly and stagnate.

Increasing the number of epochs from 50 to 100 generally improves accuracy,

but only up to a certain point. After reaching a certain number of epochs, the

improvement in performance is not very significant, as seen in Figure 5. In

conclusion, the optimized RNN-LSTM model offers a highly accurate and efficient

approach to detecting SQL injection attacks, providing a solid foundation for real-

time intrusion detection systems. By addressing the limitations and extending the

model to handle more complex scenarios, this research paves the way for more

effective cybersecurity solutions.

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 131

Figure 5. Accuracy Comparison with Epochs

3.2.2 Future Research Directions

The optimization of recurrent neural networks (RNNs) for SQL injection

intrusion detection presents significant opportunities for enhancing the robustness

of database security systems. The current landscape of intrusion detection systems

(IDSs) emphasizes the necessity for models that can effectively categorize SQL

queries as either benign or malicious, particularly in light of evolving attack

strategies such as zero-day and obfuscated SQL injection attacks.

First, RNNs have been instrumental in processing sequential data due to their

ability to retain contextual information, which is vital when analyzing SQL syntax

and semantics. Some research proposes a novel method using RNNs that captures

the syntax and semantics of SQL queries, demonstrating the effectiveness of RNNs

in distinguishing between benign and malicious queries based on training data

composed of both types of queries [11]. However, as SQL injection techniques grow

increasingly sophisticated, integrating more advanced deep learning architectures,

such as Transformer-based models, may vastly improve detection capabilities. [12]

illustrate how a hybrid model combining Bidirectional Encoder Representations

from Transformers (BERT) and Long Short-Term Memory (LSTM) networks

enhances detection by effectively analyzing complex SQL query patterns [12].

Moreover, reinforcement learning (RL) approaches offer promising avenues

for real-time model adjustments and enhancements. López-Martín et al. (2020)

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 132

discuss how RL can dynamically adapt models for intrusion detection, enabling

RNN models for SQL injection detection to learn from new attack data continuously

without extensive retraining [13]. Such adaptations are integral in environments

characterized by high traffic, where conventional static models may falter under the

weight of evolving attack patterns [14].

Furthermore, the scalability of detection models in high-traffic scenarios is

crucial. High-performance detection systems capable of processing large datasets

efficiently will ensure that the integrity of database systems is maintained even as

transaction volumes escalate. Future research should prioritize the development of

hybrid models that incorporate both RNNs for sequence modeling and RL for

proactive adaptations, possibly leveraging architectures that extend beyond

traditional RNNs, including autoencoders. Other research proposes using RNN

autoencoders for detecting SQL injection attacks, indicating the potential for hybrid

approaches to enhance detection capabilities [15].

In summary, future directions in optimizing RNN models for SQL injection

detection should encompass the exploration of advanced architectures, the

integration of RL techniques for dynamic resilience against new threats, and a focus

on scalability for high-traffic environments. These measures will enhance the

effectiveness of intrusion detection systems in safeguarding database integrity

against emerging cyber threats.

4. Conclusion

This study demonstrates the effectiveness of an optimized Recurrent Neural

Network (RNN) with Long Short-Term Memory (LSTM) layers for detecting SQL

injection attacks, achieving 98.17% accuracy and a loss of 0.4084 after 100 epochs. By

fine-tuning hyperparameters such as the Tanh activation function, Adam optimizer,

and a learning rate of 0.001, this model outperforms previous RNN models, like

AlAzzawi's 2023 approach (94.5% accuracy). The results highlight the importance of

adaptive optimizers, non-saturating activation functions, and addressing class

imbalance. These findings are valuable for real-time intrusion detection systems,

especially in database security, and suggest the model's suitability for web

application firewalls and security monitoring. Future research could explore

advanced architectures like Transformers, improve adversarial attack resilience, and

focus on scalability and real-time processing for high-traffic environments, further

advancing SQL injection detection and database application security.

Authors’ Declaration

Authors’ contributions and responsibilities - The authors made substantial

contributions to the conception and design of the study. The authors took

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 133

responsibility for data analysis, interpretation, and discussion of results. The authors

read and approved the final manuscript.

Funding - No funding information from the authors.

Availability of data and materials - All data is available from the authors.

Competing interests - The authors declare no competing interest.

Additional information - No additional information from the authors.

References

[1] “OWASP Top Ten 2021: A03-Injection,” OWASP Foundation. [Online].

Available: https://owasp.org/Top10/A03_2021-Injection/

[2] A. G. Kakisim, “A deep learning approach based on multi-view consensus for

SQL injection detection,” Int. J. Inf. Secur., vol. 23, no. 2, pp. 1541–1556, Apr.

2024, doi: 10.1007/s10207-023-00791-y.

[3] J. Zheng, J. Li, C. Li, and R. Li, “A SQL Blind Injection Method Based on Gated

Recurrent Neural Network,” in 2022 7th IEEE International Conference on Data

Science in Cyberspace (DSC), Guilin, China: IEEE, July 2022, pp. 519–525. doi:

10.1109/DSC55868.2022.00078.

[4] A. ALAzzawi, “SQL Injection Detection Using RNN Deep Learning Model,”

JAETS, vol. 5, no. 1, pp. 531–541, Dec. 2023, doi: 10.37385/jaets.v5i1.2864.

[5] Y. Liu and Y. Dai, “Deep Learning in Cybersecurity: A Hybrid BERT–LSTM

Network for SQL Injection Attack Detection,” IET Information Security, vol.

2024, pp. 1–16, Apr. 2024, doi: 10.1049/2024/5565950.

[6] J. Guo, Q. Zhang, Y. Zhao, H. Shi, Y. Jiang, and J. Sun, “RNN-Test: Towards

Adversarial Testing for Recurrent Neural Network Systems,” IIEEE Trans.

Software Eng., vol. 48, no. 10, pp. 4167–4180, Oct. 2022, doi:

10.1109/TSE.2021.3114353.

[7] D. Stiawan et al., “An Improved LSTM-PCA Ensemble Classifier for SQL

Injection and XSS Attack Detection,” Computer Systems Science and Engineering,

vol. 46, no. 2, pp. 1759–1774, 2023, doi: 10.32604/csse.2023.034047.

[8] N. Thalji, A. Raza, M. S. Islam, N. A. Samee, and M. M. Jamjoom, “AE-Net:

Novel Autoencoder-Based Deep Features for SQL Injection Attack Detection,”

IEEE Access, vol. 11, pp. 135507–135516, 2023, doi:

10.1109/ACCESS.2023.3337645.

[9] D. Hindarto, “Comparison of RNN Architectures and Non-RNN

Architectures in Sentiment Analysis,” SinkrOn, vol. 8, no. 4, pp. 2537–2546,

Oct. 2023, doi: 10.33395/sinkron.v8i4.13048.

[10] S. Sajid, “SQL Injection Dataset.” [Online]. Available:

https://www.kaggle.com/datasets/sajid576/sql-injection-dataset

[11] A. Alazzawi, "Sql injection detection using rnn deep learning model", Journal

of Applied Engineering and Technological Science (Jaets), vol. 5, no. 1, p. 531-

541, 2023. https://doi.org/10.37385/jaets.v5i1.2864

[12] Y. Liu and Y. Dai, "Deep learning in cybersecurity: a hybrid bert–lstm network

for sql injection attack detection", Iet Information Security, vol. 2024, no. 1,

2024. https://doi.org/10.1049/2024/5565950

Turmuzi, Kusrini

Energy: Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 15 No. 2 (2025) 134

[13] M. López-Martín, B. Carro, & A. Sánchez-Esguevillas, "Application of deep

reinforcement learning to intrusion detection for supervised problems", Expert

Systems With Applications, vol. 141, p. 112963, 2020.

https://doi.org/10.1016/j.eswa.2019.112963

[14] S. Kim, S. Yoon, J. Cho, D. Kim, T. Moore, F. Free-Nelsonet al., "Divergence:

deep reinforcement learning-based adaptive traffic inspection and moving

target defense countermeasure framework", Ieee Transactions on Network

and Service Management, vol. 19, no. 4, p. 4834-4846, 2022.

https://doi.org/10.1109/tnsm.2021.3139928

[15] M. Alghawazi, D. Alghazzawi, & S. Alarifi, "Deep learning architecture for

detecting sql injection attacks based on rnn autoencoder model", Mathematics,

vol. 11, no. 15, p. 3286, 2023. https://doi.org/10.3390/math11153286

