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Abstract 

This study focuses on optimizing the Recurrent Neural Network (RNN) model, 

specifically through the integration of Long Short-Term Memory (LSTM) layers, to 

improve the detection of SQL injection attacks in database systems. SQL injection is 

a significant cybersecurity threat that can compromise sensitive data and 

organizational integrity. Using a dataset from Kaggle, the research explores various 

hyperparameter configurations, such as activation functions (Softmax, Tanh, ReLU, 

PReLU, and LReLU), optimizers (Adam, SGD), learning rates (0.001, 0.0001), and 

regularization techniques (Dropout and L2). The study reports a notable 

performance improvement with the Tanh activation function, Adam optimizer, and 

a learning rate of 0.001, achieving an accuracy of 98.17% and a loss of 0.4084 after 100 

epochs. Compared to other models, such as those using standard RNNs or hybrid 

BERT-LSTM models, the proposed RNN-LSTM model outperforms in detection 

accuracy while maintaining lower computational requirements, making it more 

suitable for real-time applications. This research contributes to the field of database 

security by demonstrating the efficacy of optimized RNN-LSTM models for real-

time SQL injection detection and highlights the importance of hyperparameter 

tuning for improved performance. The findings pave the way for future 

advancements in intelligent threat detection systems. 
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1. Introduction 

In In today’s rapidly evolving digital landscape, the safeguarding of sensitive 

data is paramount. SQL injection attacks, which exploit vulnerabilities in database-

driven applications, remain one of the most dangerous cybersecurity threats [1]. 
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These attacks can manipulate SQL queries to bypass authentication, access sensitive 

information, and damage organizational systems. As reported by the Open Web 

Application Security Project (OWASP), SQL injection is consistently ranked as one 

of the top vulnerabilities in web applications, emphasizing the critical need for 

robust intrusion detection mechanisms. Despite significant advancements in 

cybersecurity, SQL injection attacks continue to be a prevalent method for 

cybercriminals to exploit web applications, posing a constant challenge to database 

security. 

Machine learning techniques have shown promise in improving intrusion 

detection, and among these, Recurrent Neural Networks (RNNs), particularly Long 

Short-Term Memory (LSTM) networks, have gained attention for their ability to 

process sequential data and identify temporal patterns [2]. Previous studies have 

demonstrated the success of RNN-based models in detecting SQL injection attacks 

[3]. For example, AlAzzawi (2023) reported achieving high accuracy with a standard 

RNN model in identifying SQL injection attempts [4]. While Liu and Dai (2024) 

implemented a hybrid BERT-LSTM model for intrusion detection with notable 

precision [5]. These efforts illustrate the growing potential of deep learning models 

in cybersecurity but also highlight ongoing challenges [6], particularly in terms of 

optimizing model performance and achieving real-time detection capabilities. 

While prior research has contributed significantly to the field, gaps remain in 

optimizing RNN-LSTM models for SQL injection detection. Existing studies often 

focus on achieving high accuracy but overlook issues related to computational 

efficiency, model overfitting, and the ability to adapt to evolving attack strategies. 

Moreover, many models fail to address the imbalanced nature of SQL injection 

datasets [7], where benign queries outnumber malicious ones, leading to inaccurate 

evaluation results. This study aims to fill these gaps by focusing on the optimization 

of RNN-LSTM models to improve both detection accuracy and computational 

efficiency, with a particular emphasis on reducing false positives and enhancing 

real-time detection capabilities. 

The primary objective of this research is to develop an optimized RNN-LSTM 

model that offers a balance between high accuracy and computational efficiency. 

This study investigates various hyperparameter configurations, including activation 

functions (Tanh, ReLU, LReLU), optimizers (Adam, SGD), learning rates, and 

regularization methods, to enhance the model's performance [8]. By addressing the 

challenges of class imbalance, overfitting, and model adaptability, this research 

seeks to contribute to the development of more reliable and scalable intrusion 

detection systems. Additionally, the study aims to provide insights into the novel 

application of RNN-LSTM models in the context of SQL injection detection and lay 

the groundwork for future advancements in intelligent threat detection models. 
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2. Methods 

2.1 Stages of Research 

This study employs a quantitative experimental research design to evaluate 

the performance of an optimized Recurrent Neural Network (RNN) model with 

Long Short-Term Memory (LSTM) layers in detecting SQL injection attacks [9]. The 

experiments aim to identify the most effective hyperparameter configurations, while 

also addressing key challenges such as class imbalance and model overfitting. 

2.2 System Design  

The dataset used for this research was sourced from Kaggle and contains over 

30,000 SQL queries [10]. labeled as either benign (0) or malicious (1). Specifically, the 

dataset includes 11,382 malicious queries and 19,537 benign queries, resulting in a 

36.8% to 63.2% distribution of malicious and benign queries, respectively. This class 

imbalance presents a challenge for model training and evaluation, as models trained 

on imbalanced datasets may exhibit bias toward the majority class (benign queries). 

To address this issue, a series of preprocessing techniques were employed to balance 

the dataset and improve model performance. These included: 

• Resampling Methods: The dataset was balanced using oversampling 

techniques such as the Synthetic Minority Over-sampling Technique 

(SMOTE), which generated synthetic examples of the minority class 

(malicious queries). This ensures that the model is exposed to a more balanced 

distribution of classes during training, which helps mitigate bias. 

• Evaluation Metrics: In addition to accuracy, which may be misleading in the 

case of imbalanced data, additional evaluation metrics such as precision, 

recall, and F1-score were used to assess model performance. These metrics 

provide a more reliable measure of model effectiveness, particularly for 

detecting malicious queries. 

2.3 Data Preprocessing: 

Several preprocessing steps were applied to the dataset before training the 

model: 

• Tokenization: SQL queries were tokenized into individual components to 

enable the model to process the data as sequences. 

• Numerical Encoding: The tokenized queries were numerically encoded using 

one-hot encoding and word embeddings to represent the categorical tokens 

as vectors. 

• Sequence Padding: To ensure that all input sequences had the same length, 

padding was applied to standardize the sequence lengths across the dataset. 

This is necessary for the model to process the data efficiently. 
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• Normalization: The numerical features were normalized to ensure consistent 

scaling and to prevent any single feature from disproportionately influencing 

the model's performance. 

 

 
Figure 1. SQL Injection Dataset Labeling 

 

Tabel 1. Data Sample of Dataset SQL Injection 

Query Label 

" or pg_sleep(__TIME__) -- 1 

create user name identified by pass123 temporary tablespace temp 1 

AND 1 = utl_inaddr.get_host_address(...) 1 

select * from users where id = '1' or @@1=1 -- 1 

select * from users where id = 1 or 1#" (...) 1 

 

Preprocessing steps included tokenization of SQL queries, numerical encoding 

using one-hot encoding or embeddings, and sequence padding to ensure uniform 

input lengths. The dataset was also normalized, and label encoding was applied for 

classification as shown in Tabel 1. 

2.4 Stages of Research 

The research process involves a series of steps necessary to carry out the 

experiment. The following is a research flowchart and an explanation of each step: 
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Figure 2. Research Flow Chart 

 

The research flow consists of several key stages, as outlined below: 

1. Data Splitting: The dataset was divided into training and testing subsets, 

with 80% of the data allocated for training and 20% for testing. This 

division allows for the evaluation of model performance on unseen data, 

providing an accurate assessment of generalization capability. 

2. Model Training: The RNN model was trained using various 

configurations of hyperparameters, including activation functions, 

optimizers, learning rates, and the number of epochs. The following 

hyperparameters were systematically tested: 

• Activation Functions: Tanh, ReLU, LReLU, PReLU, and Softmax were 

tested. Tanh was selected due to its ability to avoid saturation and 

perform well with sequential data, which is crucial for SQL injection 

detection. 

• Optimizers: The Adam optimizer and Stochastic Gradient Descent 

(SGD) were evaluated. Adam was chosen for its adaptive learning rate 

capabilities, which can accelerate convergence, especially for complex 

datasets like those involved in intrusion detection tasks. 
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• Learning Rates: Two learning rates, 0.001 and 0.0001, were tested. A 

learning rate of 0.001 was preferred based on prior studies [4][5] 

indicating its effectiveness in balancing training speed and model 

stability. 

• Regularization: A combination of Dropout (set at 0.5) and L2 

regularization was used to prevent overfitting, especially with the 

imbalance in the dataset and the high risk of overfitting given the 

complexity of the model. 

• Epochs: The number of epochs was varied between 50, 70, and 100 to 

assess the effect of longer training on model performance and to avoid 

overfitting by monitoring performance on the validation set. 

3. Model Evaluation: After training, the model's performance was evaluated 

using the test set. As mentioned, multiple evaluation metrics (accuracy, 

precision, recall, F1-score) were used to measure the model's performance 

comprehensively. The accuracy score was complemented by the confusion 

matrix, which provides insights into the true positives, false positives, true 

negatives, and false negatives, offering a better understanding of the 

model’s ability to detect malicious queries. 

2.5 Hyperparameter Selection Justification: 

The choice of hyperparameters was informed by the characteristics of the 

dataset and prior research in the field of intrusion detection. The selection of the 

LSTM architecture was based on its proven effectiveness in handling sequential data, 

making it ideal for capturing the temporal dependencies inherent in SQL queries. 

Additionally, Tanh was chosen as the activation function due to its non-saturating 

nature, which allows for more stable gradients and better performance with the 

dataset. The Adam optimizer was selected for its ability to adaptively adjust learning 

rates, ensuring faster convergence and reducing the risk of overshooting the optimal 

solution. 

2.6 Class Imbalance Handling in Model Training: 

To address the issue of class imbalance, in addition to oversampling, a 

weighted loss function was used during model training. This approach assigns 

higher penalties for misclassifying malicious queries, compensating for the 

imbalance by making the model more sensitive to the minority class. This step 

ensures that the model doesn't favor the majority class (benign queries) and 

improves its ability to correctly classify malicious SQL injection attempts. 

 
3.Results and Discussion 

The experimental results confirm the efficacy of the optimized Recurrent 

Neural Network (RNN) model with Long Short-Term Memory (LSTM) layers in 
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detecting SQL injection attacks. As presented in Table 2, the performance of the 

model was evaluated across various hyperparameter configurations, including 

activation functions, optimizers, learning rates, and the number of epochs. The key 

findings highlight the superior performance of the Tanh activation function in 

combination with the Adam optimizer, resulting in the highest accuracy (98.17%) 

and the lowest loss (0.4084) after 100 epochs. This configuration outperformed other 

activation functions and optimizers, providing a compelling justification for its use 

in the final model. 

 

3.1 Key Findings 

a. Activation Function and Optimizer: 

The comparison of different activation functions and optimizers demonstrates 

that Tanh coupled with Adam optimizer consistently delivers the best results in 

terms of both accuracy and loss reduction. Non-saturating activation functions, 

like Tanh and ReLU, were particularly effective, as they avoided the gradient 

saturation problem that can impede training, especially with deep neural 

networks. The Adam optimizer was superior to SGD, likely due to its adaptive 

learning rate, which allowed for faster convergence and better overall 

performance. This combination of Tanh and Adam provides a stable, efficient, and 

accurate model for SQL injection detection. 

b. Impact of Learning Rate: 

The learning rate played a critical role in determining the model's convergence 

speed and overall performance. A learning rate of 0.001 yielded the best results, 

while smaller learning rates such as 0.00001 resulted in slower convergence, which 

ultimately impacted the model's ability to achieve high accuracy. Learning rates 

that are too low can cause the model to get stuck in suboptimal local minima, 

thereby reducing its ability to improve during training. 

c. Effect of Epochs: 

The number of epochs was also found to influence model performance. While 

increasing the epochs from 50 to 100 resulted in improved accuracy, the 

performance gain became marginal after reaching 100 epochs. This indicates that 

the model began to converge after a certain number of epochs, and further training 

did not significantly improve results. In contrast, 50 epochs may not provide 

sufficient training for the model to reach its optimal accuracy, especially in the 

case of complex datasets with high variance. 
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Tabel 2. Accuracy Comparison based on Activation Function and Optimizer  

Index Activation Optimizer Learning Rate Epochs Accuracy Loss 

0 LReLU Adam 0.001 50 0.9655 0.3594 

1 Tanh SGD 0.001 50 0.9578 3.0912 

2 LReLU SGD 0.001 50 0.9529 3.1287 

3 LReLU Adam 0.00001 50 0.9241 0.883 

4 Tanh Adam 0.00001 50 0.9195 0.9188 

5 PReLU Adam 0.00001 50 0.9190 0.9921 

6 Tanh Adam 0.001 70 0.9565 0.5838 

7 PReLU Adam 0.001 70 0.9541 0.4586 

8 ReLU SGD 0.001 70 0.9537 3.4182 

9 Tanh Adam 0.00001 70 0.9402 0.6298 

10 PReLU Adam 0.00001 70 0.9353 0.6744 

11 ReLU Adam 0.00001 70 0.9351  0.6220 

12 Tanh Adam 0.001 100 0.9817 0.4084 

13 Tanh SGD 0.001 100 0.9636 1.7652 

14 LReLU SGD 0.001 100 0.9550 3.9411 

15 Tanh Adam 0.0001 100 0.9476 0.5514 

16 PReLU Adam 0.0001 100 0.9460 0.4692 

17 LReLU Adam 0.0001 100 0.9457 0.4732 

 

This study conducted a series of experiments to evaluate the performance of 

the Recurrent Neural Network (RNN) model with LSTM layers in detecting SQL 

injection attacks. The parameters tested included activation functions, optimizer 

types, learning rate values, and the number of epochs. Regularization was 

performed using a combination of the Dropout and L2 methods. The following is a 

summary of the results of several parameter combinations that have been tested: For 

systems where computational efficiency is critical as summarized in Tabel 2, using 

LReLU with Adam optimizer and 50 epochs is sufficient to achieve high accuracy. 

However, for environments prioritizing maximum detection capability, Tanh with 

Adam optimizer and 100 epochs provides the highest accuracy, albeit with increased 

training time and other functions were tested but not all of them were used in the 

final model. 

 

3.2 Discussion of Overfitting and Model Limitations 

Despite the promising results, the study also identified the risk of overfitting 

in certain configurations. Overfitting occurs when a model learns to perform well on 

the training data but fails to generalize effectively to unseen data. This issue was 

particularly evident in configurations with a high number of epochs and certain 

optimizer settings. Although Dropout and L2 regularization were applied to 

mitigate overfitting, there remains a potential concern, particularly with small or 

imbalanced datasets. Regularization techniques like SMOTE for balancing the 
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dataset and early stopping could further help to address overfitting and improve the 

model's generalizability. 

Furthermore, zero-day attacks and highly obfuscated SQL injections remain 

challenges that are not fully addressed by this model. While the optimized RNN-

LSTM model demonstrated high accuracy in detecting known SQL injection 

patterns, new attack variants that have not been seen during training could still 

evade detection. In future work, the integration of autoencoders for anomaly 

detection or the use of unsupervised learning methods could help the model adapt 

to previously unseen attacks. Additionally, adversarial training could improve the 

model's robustness against more sophisticated or obfuscated SQL injection 

techniques. 

 

 

Figure 3. Accuracy Comparison based on Activation Function and Optimizer 

 

Figure 3 shows that Tanh with Adam achieves the highest accuracy, indicating 

the advantage of adaptive optimizers and non-saturating activation functions. From 

the experimental results, it can be seen that the Tanh, ReLU, and PreLU activation 

functions produce higher accuracy compared to other activation functions. This 

shows that non-linear activation that avoids saturation, such as sigmoid/tanh, 

provides better performance. Adam shows more stable and consistent performance 

with higher accuracy than SGD in most scenarios. This is due to Adam's ability to 

adaptively adjust the learning rate during the training process. 
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Figure 4. Accuracy Comparison with Learning Rate 

 

3.2.1 Real-World Applicability 

The model's performance in a controlled experimental environment is 

promising, but its real-world applicability in dynamic, large-scale systems needs 

further exploration. Real-world environments introduce variability, such as new 

attack vectors, evolving database systems, and shifting patterns in user queries. To 

improve its deployment in practical settings, future adaptations of this model should 

focus on scalability, real-time processing capabilities, and the ability to integrate 

with existing web application firewalls (WAFs) or other security tools. The ability to 

detect zero-day attacks and adapt to changing attack patterns is crucial for long-term 

effectiveness in production systems. 

As shown in Figure 4 learning rate of 0.001 has been proven to produce higher 

accuracy compared to very small learning rates such as 0.00001. Learning rates that 

are too small tend to cause models to converge slowly and stagnate. 

Increasing the number of epochs from 50 to 100 generally improves accuracy, 

but only up to a certain point. After reaching a certain number of epochs, the 

improvement in performance is not very significant, as seen in Figure 5. In 

conclusion, the optimized RNN-LSTM model offers a highly accurate and efficient 

approach to detecting SQL injection attacks, providing a solid foundation for real-

time intrusion detection systems. By addressing the limitations and extending the 

model to handle more complex scenarios, this research paves the way for more 

effective cybersecurity solutions. 
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Figure 5. Accuracy Comparison with Epochs 

 

3.2.2 Future Research Directions 

The optimization of recurrent neural networks (RNNs) for SQL injection 

intrusion detection presents significant opportunities for enhancing the robustness 

of database security systems. The current landscape of intrusion detection systems 

(IDSs) emphasizes the necessity for models that can effectively categorize SQL 

queries as either benign or malicious, particularly in light of evolving attack 

strategies such as zero-day and obfuscated SQL injection attacks. 

First, RNNs have been instrumental in processing sequential data due to their 

ability to retain contextual information, which is vital when analyzing SQL syntax 

and semantics. Some research proposes a novel method using RNNs that captures 

the syntax and semantics of SQL queries, demonstrating the effectiveness of RNNs 

in distinguishing between benign and malicious queries based on training data 

composed of both types of queries [11]. However, as SQL injection techniques grow 

increasingly sophisticated, integrating more advanced deep learning architectures, 

such as Transformer-based models, may vastly improve detection capabilities. [12] 

illustrate how a hybrid model combining Bidirectional Encoder Representations 

from Transformers (BERT) and Long Short-Term Memory (LSTM) networks 

enhances detection by effectively analyzing complex SQL query patterns [12]. 

Moreover, reinforcement learning (RL) approaches offer promising avenues 

for real-time model adjustments and enhancements. López-Martín et al. (2020) 
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discuss how RL can dynamically adapt models for intrusion detection, enabling 

RNN models for SQL injection detection to learn from new attack data continuously 

without extensive retraining [13]. Such adaptations are integral in environments 

characterized by high traffic, where conventional static models may falter under the 

weight of evolving attack patterns [14]. 

Furthermore, the scalability of detection models in high-traffic scenarios is 

crucial. High-performance detection systems capable of processing large datasets 

efficiently will ensure that the integrity of database systems is maintained even as 

transaction volumes escalate. Future research should prioritize the development of 

hybrid models that incorporate both RNNs for sequence modeling and RL for 

proactive adaptations, possibly leveraging architectures that extend beyond 

traditional RNNs, including autoencoders. Other research proposes using RNN 

autoencoders for detecting SQL injection attacks, indicating the potential for hybrid 

approaches to enhance detection capabilities [15]. 

In summary, future directions in optimizing RNN models for SQL injection 

detection should encompass the exploration of advanced architectures, the 

integration of RL techniques for dynamic resilience against new threats, and a focus 

on scalability for high-traffic environments. These measures will enhance the 

effectiveness of intrusion detection systems in safeguarding database integrity 

against emerging cyber threats. 

 
4. Conclusion 

This study demonstrates the effectiveness of an optimized Recurrent Neural 

Network (RNN) with Long Short-Term Memory (LSTM) layers for detecting SQL 

injection attacks, achieving 98.17% accuracy and a loss of 0.4084 after 100 epochs. By 

fine-tuning hyperparameters such as the Tanh activation function, Adam optimizer, 

and a learning rate of 0.001, this model outperforms previous RNN models, like 

AlAzzawi's 2023 approach (94.5% accuracy). The results highlight the importance of 

adaptive optimizers, non-saturating activation functions, and addressing class 

imbalance. These findings are valuable for real-time intrusion detection systems, 

especially in database security, and suggest the model's suitability for web 

application firewalls and security monitoring. Future research could explore 

advanced architectures like Transformers, improve adversarial attack resilience, and 

focus on scalability and real-time processing for high-traffic environments, further 

advancing SQL injection detection and database application security. 
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